ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a variational approach for computing the macroscopic entanglement in a many-body mixed state, based on entanglement witness operators, and compute the entanglement of formation (EoF), a mixed-state generalization of the entanglement entrop y, in single- and two-channel Kondo systems at finite temperature. The thermal suppression of the EoF obeys power-law scaling at low temperature. The scaling exponent is halved from the single- to the two-channel system, which is attributed, using a bosonization method, to the non-Fermi liquid behavior of a Majorana fermion, a half of a complex fermion, emerging in the two-channel system. Moreover, the EoF characterizes the size and power-law tail of the Kondo screening cloud of the single-channel system.
We study the scattering phase shift of Dirac fermions at graphene edge. We find that when a plane wave of a Dirac fermion is reflected at an edge of graphene, its reflection phase is shifted by the geometric phase resulting from the change of the pse udospin of the Dirac fermion in the reflection. The geometric phase is the Pancharatnam-Berry phase that equals the half of the solid angle on Bloch sphere determined by the propagation direction of the incident wave and also by the orientation angle of the graphene edge. The geometric phase is finite at zigzag edge in general, while it always vanishes at armchair edge because of intervalley mixing. To demonstrate its physical effects, we first connect the geometric phase with the energy band structure of graphene nanoribbon with zigzag edge. The magnitude of the band gap of the nanoribbon, that opens in the presence of the staggered sublattice potential induced by edge magnetization, is related to the geometric phase. Second, we numerically study the effect of the geometric phase on the Veselago lens formed in a graphene nanoribbon. The interference pattern of the lens is distinguished between armchair and zigzag nanoribbons, which is useful for detecting the geometric phase.
We develop a numerical approach for quantifying entanglement in mixed quantum states by convex-roof entanglement measures, based on the optimal entanglement witness operator and the minimax optimization method. Our approach is applicable to general e ntanglement measures and states and is an efficient alternative to the conventional approach based on the optimal pure-state decomposition. Compared with the conventional one, it has two important merits: (i) that the global optimality of the solution is quantitatively verifiable, and (ii) that the optimization is considerably simplified by exploiting the common symmetry of the target state and measure. To demonstrate the merits, we quantify Greenberger-Horne-Zeilinger (GHZ) entanglement in a class of three-qubit full-rank mixed states composed of the GHZ state, the W state, and the white noise, the simplest mixtures of states with different genuine multipartite entanglement, which have not been quantified before this work. We discuss some general properties of the form of the optimal witness operator and of the convex structure of mixed states, which are related to the symmetry and the rank of states.
133 - Sunghun Park , H.-S. Sim 2008
We theoretically study electronic properties of a graphene sheet on xy plane in a spatially nonuniform magnetic field, $B = B_0 hat{z}$ in one domain and $B = B_1 hat{z}$ in the other domain, in the quantum Hall regime and in the low-energy limit. We find that the magnetic edge states of the Dirac fermions, formed along the boundary between the two domains, have features strongly dependent on whether $B_0$ is parallel or antiparallel to $B_1$. In the parallel case, when the Zeeman spin splitting can be ignored, the magnetic edge states originating from the $n=0$ Landau levels of the two domains have dispersionless energy levels, contrary to those from the $n e 0$ levels. Here, $n$ is the graphene Landau-level index. They become dispersive as the Zeeman splitting becomes finite or as an electrostatic step potential is additionally applied. In the antiparallel case, the $n=0$ magnetic edge states split into electron-like and hole-like current-carrying states. The energy gap between the electron-like and hole-like states can be created by the Zeeman splitting or by the step potential. These features are attributed to the fact that the pseudo-spin of the magnetic edge states couples to the direction of the magnetic field. We propose an Aharonov-Bohm interferometry setup in a graphene ribbon for experimental study of the magnetic edge states.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا