ترغب بنشر مسار تعليمي؟ اضغط هنا

A microwave setup for mode-resolved transport measurement in quasi-one-dimensional (quasi-1D) structures is presented. We will demonstrate a technique for direct measurement of the Greens function of the system. With its help we will investigate quas i-1D structures with various types of disorder. We will focus on stratified structures, i.e., structures that are homogeneous perpendicular to the direction of wave propagation. In this case the interaction between different channels is absent, so wave propagation occurs individually in each open channel. We will apply analytical results developed in the theory of one-dimensional (1D) disordered models in order to explain main features of the quasi-1D transport. The main focus will be selective transport due to long-range correlations in the disorder. In our setup, we can intentionally introduce correlations by changing the positions of periodically spaced brass bars of finite thickness. Because of the equivalence of the stationary Schrodinger equation and the Helmholtz equation, the result can be directly applied to selective electron transport in nanowires, nanostripes, and superlattices.
Microwave transport experiments have been performed in a quasi-two-dimensional resonator with randomly distributed scatterers, each mimicking an $r^{-2}$ repulsive potential. Analysis of both stationary wave fields and transient transport shows large deviations from Rayleighs law for the wave height distribution, which can only partially be described by existing multiple-scattering theories. At high frequencies, the flow shows branching structures similar to those observed previously in stationary imaging of electron flow. Semiclassical simulations confirm that caustics in the ray dynamics are likely to be responsible for the observed structures. Particular conspicuous features observed in the stationary patterns are hot spots with intensities far beyond those expected in a random wave field. Reinterpreting the flow patterns as ocean waves in the presence of spatially varying currents or depth variations in the sea floor, the branches and hot spots lead to enhanced frequency of freak or rogue wave formation in these regions.
From a reflection measurement in a rectangular microwave billiard with randomly distributed scatterers the scattering and the ordinary fidelity was studied. The position of one of the scatterers is the perturbation parameter. Such perturbations can b e considered as {em local} since wave functions are influenced only locally, in contrast to, e. g., the situation where the fidelity decay is caused by the shift of one billiard wall. Using the random-plane-wave conjecture, an analytic expression for the fidelity decay due to the shift of one scatterer has been obtained, yielding an algebraic $1/t$ decay for long times. A perfect agreement between experiment and theory has been found, including a predicted scaling behavior concerning the dependence of the fidelity decay on the shift distance. The only free parameter has been determined independently from the variance of the level velocities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا