ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the observation of quantum reflection from a narrow, attractive, potential using bright solitary matter-waves formed from a 85Rb Bose-Einstein condensate. We create narrow potentials using a tightly focused, red-detuned laser beam, and obse rve reflection of up to 25% of the atoms, along with the trapping of atoms at the position of the beam. We show that the observed reflected fraction is much larger than theoretical predictions for a narrow Gaussian potential well; a more detailed model of bright soliton propagation, accounting for the generic presence of small subsidiary intensity maxima in the red-detuned beam, suggests that these small intensity maxima are the cause of this enhanced reflection.
402 - S. J. Kim , H. Yu , S. T. Gang 2015
We have constructed an asymmetric matter-wave beam splitter and a ring potential on an atom chip with Bose-Einstein condensates using radio-frequency dressing. By applying rf-field parallel to the quantization axis in the vicinity of the static trap minima added to perpendicular rf-fields, versatile controllability on the potentials is realized. Asymmetry of the rf-induced double well is manipulated without discernible displacement of the each well along horizontal and vertical direction. Formation of an isotropic ring potential on an atom chip is achieved by compensating the gradient due to gravity and inhomogeneous coupling strength. In addition, position and rotation velocity of a BEC along the ring geometry are controlled by the relative phase and the frequency difference between the rf-fields, respectively.
60 - H. Yu 2015
Gamma-ray bursts (GRBs) are the most violent explosions in the Universe and can be used to explore the properties of high-redshift universe. It is believed that the long GRBs are associated with the deaths of massive stars. So it is possible to use G RBs to investigate the star formation rate (SFR). In this paper, we use Lynden-Bells $c^-$ method to study the luminosity function and rate of emph{Swift} long GRBs without any assumptions. We find that the luminosity of GRBs evolves with redshift as $L(z)propto g(z)=(1+z)^k$ with $k=2.43_{-0.38}^{+0.41}$. After correcting the redshift evolution through $L_0(z)=L(z)/g(z)$, the luminosity function can be expressed as $psi(L_0)propto L_0^{-0.14pm0.02}$ for dim GRBs and $psi(L_0)propto L_0^{-0.70pm0.03}$ for bright GRBs, with the break point $L_{0}^{b}=1.43times10^{51}~{rm erg~s^{-1}}$. We also find that the formation rate of GRBs is almost constant at $z<1.0$ for the first time, which is remarkably different from the SFR. At $z>1.0$, the formation rate of GRB is consistent with the SFR. Our results are dramatically different from previous studies. Some possible reasons for this low-redshift excess are discussed. We also test the robustness of our results with Monte Carlo simulations. The distributions of mock data (i.e., luminosity-redshift distribution, luminosity function, cumulative distribution and $log N-log S$ distribution) are in good agreement with the observations. Besides, we also find that there are remarkable difference between the mock data and the observations if long GRB are unbiased tracers of SFR at $z<1.0$.
67 - K. M. McCreary , Hua Wen , H. Yu 2011
We immerse single layer graphene spin valves into purified water for a short duration (<1 min) and investigate the effect on spin transport. Following water immersion, we observe an enhancement in nonlocal magnetoresistance. Additionally, the enhance ment of spin signal is correlated with an increase in junction resistance, which produces an increase in spin injection efficiency. This study provides a simple way to improve the signal magnitude and establishes the robustness of graphene spin valves to water exposure, which enables future studies involving chemical functionalization in aqueous solution.
73 - P. Tozzi , J. Santos , H. Yu 2010
We investigate the scientific impact of the Wide Field X-ray Telescope mission. We present simulated images and spectra of X-ray sources as observed from the three surveys planned for the nominal 5-year WFXT lifetime. The goal of these simulations is to provide WFXT images of the extragalactic sky in different energy bands based on accurate description of AGN populations, normal and star forming galaxies, groups and clusters of galaxies. The images are realized using a detailed PSF model, instrumental and physical backgrounds/foregrounds, accurate model of the effective area and the related vignetting effect. Thanks to this comprehensive modelization of the WFXT properties, the simulated images can be used to evaluate the flux limits for detection of point and extended sources, the effect of source confusion at very faint fluxes, and in general the efficiency of detection algorithms. We also simulate the spectra of the detected sources, in order to address specific science topics which are unique to WFXT. Among them, we focus on the characterization of the Intra Cluster Medium (ICM) of high-z clusters, and in particular on the measurement of the redshift from the ICM spectrum in order to build a cosmological sample of galaxy clusters. The end-to-end simulation procedure presented here, is a valuable tool in optimizing the mission design. Therefore, these simulations can be used to reliably characterize the WFXT discovery space and to verify the connection between mission requirements and scientific goals. Thanks to this effort, we can conclude on firm basis that an X-ray mission optimized for surveys like WFXT is necessary to bring X-ray astronomy at the level of the optical, IR, submm and radio wavebands as foreseen in the coming decade.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا