ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature dependent nuclear inelastic-scattering (NIS) of synchrotron radiation was applied to investigate both spin states of the spin-crossover complex [Fe(tpa)(NCS)(2)] (tpa = tris(2-pyridylmethyl)amine). A remarkable increase of the iron-ligand bond stretching upon spin crossover has unambiguously been identified by comparing the measured NIS spectra with theoretical simulations based on density-functional calculations.
Nuclear inelastic scattering (NIS) spectra were recorded for the spin-crossover complexes STP and ETP (STP = [Fe(1,1,1-trisf[N-(2-pyridylmethyl)-N-methylamino]methylg- ethane)](ClO4)2 and ETP = [Fe(1,1,1-trisf[N-(2-pyridylmethyl)-N-methylamino]methyl g-butane)](ClO4)2) at 30 K and at room temperature and also at ambient pressure and applied pressure (up to 2.6 GPa). Spin transition from the high-spin (HS) to the low-spin (LS) state was observed by lowering temperature and also by applying pressure at room temperature and has been assigned to the hardening of iron-bond stretching modes due to the smaller volume in the LS isomer.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا