ترغب بنشر مسار تعليمي؟ اضغط هنا

A sounding-rocket program called the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is proposed to be launched in the summer of 2014. CLASP will observe the solar chromosphere in Ly-alpha (121.567 nm), aiming to detect the linear polarization signal produced by scattering processes and the Hanle effect for the first time. The polarimeter of CLASP consists of a rotating half-waveplate, a beam splitter, and a polarization analyzer. Magnesium Fluoride (MgF2) is used for these optical components, because MgF2 exhibits birefringent property and high transparency at ultraviolet wavelength.
The low-lying states in 106Zr and 108Zr have been investigated by means of {beta}-{gamma} and isomer spectroscopy at the RI beam factory, respectively. A new isomer with a half-life of 620pm150 ns has been identified in 108Zr. For the sequence of eve n-even Zr isotopes, the excitation energies of the first 2+ states reach a minimum at N = 64 and gradually increase as the neutron number increases up to N = 68, suggesting a deformed sub-shell closure at N = 64. The deformed ground state of 108Zr indicates that a spherical sub-shell gap predicted at N = 70 is not large enough to change the ground state of 108Zr to the spherical shape. The possibility of a tetrahedral shape isomer in 108Zr is also discussed.
180 - H. Watanabe , M. Suzuki , 2010
Efficient implementations of the classical molecular dynamics (MD) method for Lennard-Jones particle systems are considered. Not only general algorithms but also techniques that are efficient for some specific CPU architectures are also explained. A simple spatial-decomposition-based strategy is adopted for parallelization. By utilizing the developed code, benchmark simulations are performed on a HITACHI SR16000/J2 system consisting of IBM POWER6 processors which are 4.7 GHz at the National Institute for Fusion Science (NIFS) and an SGI Altix ICE 8400EX system consisting of Intel Xeon processors which are 2.93 GHz at the Institute for Solid State Physics (ISSP), the University of Tokyo. The parallelization efficiency of the largest run, consisting of 4.1 billion particles with 8192 MPI processes, is about 73% relative to that of the smallest run with 128 MPI processes at NIFS, and it is about 66% relative to that of the smallest run with 4 MPI processes at ISSP. The factors causing the parallel overhead are investigated. It is found that fluctuations of the execution time of each process degrade the parallel efficiency. These fluctuations may be due to the interference of the operating system, which is known as OS Jitter.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا