ترغب بنشر مسار تعليمي؟ اضغط هنا

104 - Y. Zhang , J. Wei , H. W. Ou 2008
The nature of spin-density wave and its relation with superconductivity are crucial issues in the newly discovered Fe-based high temperature superconductors. Particularly it is unclear whether the superconducting phase and spin density wave (SDW) are truly exclusive from each other as suggested by certain experiments. With angle resolved photoemission spectroscopy, we here report exchange splittings of the band structures in Sr1-xKxFe2As2 (x=0,0.1,0.2), and the non-rigid-band behaviors of the splitting. Our data on single crystalline superconducting samples unambiguously prove that SDW and superconductivity could coexist in iron-pnictides.
159 - L. X. Yang , Y. Zhang , H. W. Ou 2008
The magnetic properties in the parent compounds are often intimately related to the microscopic mechanism of superconductivity. Here we report the first direct measurements on the electronic structure of a parent compound of the newly discovered iron -based superconductor, BaFe$_2$As$_2$, which provides a foundation for further studies. We show that the energy of the spin density wave (SDW) in BaFe$_2$As$_2$ is lowered through exotic exchange splitting of the band structure, rather than Fermi surface nesting of itinerant electrons. This clearly demonstrates that a metallic SDW state could be solely induced by interactions of local magnetic moments, resembling the nature of antiferromagnetic order in cuprate parent compounds.
271 - H. W. Ou , J. F. Zhao , Y. Zhang 2008
The misfit oxide, Bi$_{2}$Ba$_{1.3}$K$_{0.6}$Co$_{2.1}$O$_{y}$, made of alternating rocksalt-structured [BiO/BaO] layers and hexagonal CoO$_{2}$ layers, was studied by angle-resolved photoemission spectroscopy. Detailed electronic structure of such a highly strained oxide interfaces is revealed for the first time. We found that under the two incommensurate crystal fields, electrons are confined within individual sides of the interface, and scattered by umklapp scattering of the crystal field from the other side. In addition, the high strain on the rocksalt layer raises its chemical potential and induces large charge transfer to the CoO$_{2}$ layer. Furthermore, a novel interface effects, the interfacial enhancement of electron-phonon interactions, is discovered. Our findings of these electronic properties lay a foundation for designing future functional oxide interfaces.
278 - H. W. Ou , Y. Zhang , J. F. Zhao 2008
We investigated the temperature dependence of the density-of-states in the iron-based superconductor SmO_1-xF_xFeAs (x=0, 0.12, 0.15, 0.2) with high resolution angle-integrated photoemission spectroscopy. The density-of-states suppression is observed with decreasing temperature in all samples, revealing two characteristic energy scales (10meV and 80meV). However, no obvious doping dependence is observed. We argue that the 10meV suppression is due to an anomalously doping-independent normal state pseudogap, which becomes the superconducting gap once in the superconducting state; and alert the possibility that the 80meV-scale suppression might be an artifact of the polycrystalline samples.
126 - H. W. Ou , J. F. Zhao , Y. Zhang 2008
The electronic structure of the new superconductor, SmO$_{1-x}$F$_x$FeAs ($x=0.15$), has been studied by angle-integrated photoemission spectroscopy. Our data show a sharp feature very close to the Fermi energy, and a relative flat distribution of th e density of states between 0.5 eV and 3 eV binding energy, which agrees best with band structure calculations considering an antiferromagnetic ground state. No noticeable gap opening was observed at 12 Kelvin below the superconducting transition temperature, indicating the existence of large ungapped regions in the Brillouin zone.
369 - J. Wei , Y. Zhang , H. W. Ou 2008
Angle resolved photoemission spectroscopy study is reported on a high quality optimally doped Bi2Sr1.6La0.4CuO6+delta high Tc superconductor. In the antinodal region with maximal d-wave gap, the symbolic superconducting coherence peak, which has been widely observed in multi-CuO2-layer cuprate superconductors, is unambiguously observed in a single layer system. The associated peak-dip separation is just about 19 meV, which is much smaller than its counterparts in multi-layered compounds, but correlates with the energy scales of spin excitations in single layer cuprates.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا