ترغب بنشر مسار تعليمي؟ اضغط هنا

Data from the literature are used to explore the relation between $lambda$3883 CN band strength and the sodium and oxygen abundances of red giants in the globular cluster Messier 5. Although there is a broad tendency for CN-strong giants in this clus ter to have higher sodium abundances and lower oxygen abundances than CN-weak giants of comparable absolute magnitude there are some secondary features in these relations. The oxygen abundance [O/Fe] shows a greater range (0.6-0.7 dex) among the CN-strong giants than the CN-weak giants (approximately 0.3 dex). By contrast [Na/Fe] shows a 0.6-0.7 dex range among the CN-weak giants, but a more limited range of 0.3-0.4 dex among the CN-strong giants. The $lambda$3883 CN band anticorrelates in strength with [O/Fe] among the CN-strong giants, but there is little, if any, such trend among the CN-weak giants. In contrast, the CN band strength may show a modest correlation with [Na/Fe] among the CN-weak giants, but there is little evidence for such among the CN-strong giants. Neither oxygen or sodium abundance define a continuous relation with CN band strength. Instead, the CN-strong and CN-weak giants overlap in their sodium and possibly their oxygen abundances. At oxygen abundances of [O/Fe] = 0.20 +/- 0.05 it is possible to have both CN-weak and CN-strong giants, although there may be a discontinuity in [O/Fe] between these two groups of stars that has been smeared out by observational errors. Both CN-weak and CN-strong giants populate the sodium abundance range 0.4 <= [Na/Fe] <= 0.6. Messier 5 may be displaying the results of spatially heterogeneous chemical self-enrichment.
We investigate the loss of low-mass stars in two of the faintest globular clusters known, AM 4 and Palomar 13 (Pal 13), using HST/WFC3 F606W and F814W photometry. To determine the physical properties of each cluster --- age, mass, metallicity, extinc tion, present day mass function (MF) --- we use the maximum likelihood color-magnitude diagram (CMD) fitting program MATCH and the Dartmouth, Padova and BaSTI stellar evolution models. For AM 4, the Dartmouth models provide the best match to the CMD and yield an age of >13 Gyr, metallicity log Z/Z_solar = -1.68 +/- 0.08, a distance modulus (m-M)_V = 17.47 +/- 0.03 and reddening A_V = 0.19 +/- 0.02. For Pal 13 the Dartmouth models give an age of 13.4 +/- 0.5 Gyr, log Z/Z_solar = -1.55 +/- 0.06, (m-M)_V = 17.17 +/- 0.02 and A_V = 0.43 +/- 0.01. We find that the systematic uncertainties due to choice in assumed stellar model greatly exceed the random uncertainties, highlighting the importance of using multiple stellar models when analyzing stellar populations. Assuming a single-sloped power law MF, we find that AM 4 and Pal 13 have spectral indices alpha = +0.68 +/- 0.34 and alpha = -1.67 +/- 0.25 (where a Salpeter MF has alpha = +1.35), respectively. Comparing our derived slopes with literature measurements of cluster integrated magnitude (M_V) and MF slope indicates that AM 4 is an outlier. Its MF slope is substantially steeper than clusters of comparable luminosity, while Pal 13 has a MF in line with the general trend. We discuss both primordial and dynamical origins for the unusual MF slope of AM 4 and tentatively favor the dynamical scenario. However, MF slopes of more low luminosity clusters are needed to verify this hypothesis.
80 - Wesley H. Smith 2013
The LHC trigger and data acquisition systems will need significant modifications to operate at the HL-LHC. Due to the increased occupancy of each crossing, Level-1 trigger systems would experience degraded performance of the LHC algorithms presently selecting up to 100 kHz of crossings from the LHC input rate of 40 MHz. The DAQ systems will experience larger event sizes due to greater occupancy and higher channel counts of new detectors. This paper summarizes findings and recommendations to upgrade the LHC experiments trigger and data acquisition systems for operation at the HL-HLC.
Holonomic phases---geometric and topological---have long been an intriguing aspect of physics. They are ubiquitous, ranging from observations in particle physics to applications in fault tolerant quantum computing. However, their exploration in parti cles sharing genuine quantum correlations lack in observations. Here we experimentally demonstrate the holonomic phase of two entangled-photons evolving locally, which nevertheless gives rise to an entanglement-dependent phase. We observe its transition from geometric to topological as the entanglement between the particles is tuned from zero to maximal, and find this phase to behave more resilient to evolution changes with increasing entanglement. Furthermore, we theoretically show that holonomic phases can directly quantify the amount of quantum correlations between the two particles. Our results open up a new avenue for observations of holonomic phenomena in multi-particle entangled quantum systems.
We present analysis of high-resolution spectra of a sample of stars in the globular cluster M5 (NGC 5904). The sample includes stars from the red giant branch (seven stars), the red horizontal branch (two stars), and the asymptotic giant branch (eigh t stars), with effective temperatures ranging from 4000 K to 6100 K. Spectra were obtained with the HIRES spectrometer on the Keck I telescope, with a wavelength coverage from 3700 to 7950 angstroms for the HB and AGB sample, and 5300 to 7600 angstroms for the majority of the RGB sample. We find offsets of some abundance ratios between the AGB and the RGB branches. However, these discrepancies appear to be due to analysis effects, and indicate that caution must be exerted when directly comparing abundance ratios between different evolutionary branches. We find the expected signatures of pollution from material enriched in the products of the hot hydrogen burning cycles such as the CNO, Ne-Na, and Mg-Al cycles, but no significant differences within these signatures among the three stellar evolutionary branches especially when considering the analysis offsets. We are also able to measure an assortment of neutron-capture element abundances, from Sr to Th, in the cluster. We find that the neutron-capture signature for all stars is the same, and shows a predominately r-process origin. However, we also see evidence of a small but consistent extra s-process signature that is not tied to the light-element variations, pointing to a pre-enrichment of this material in the protocluster gas.
71 - Evan N. Kirby 2010
We derive the star formation histories of eight dwarf spheroidal (dSph) Milky Way satellite galaxies from their alpha element abundance patterns. Nearly 3000 stars from our previously published catalog (Paper II) comprise our data set. The average [a lpha/Fe] ratios for all dSphs follow roughly the same path with increasing [Fe/H]. We do not observe the predicted knees in the [alpha/Fe] vs. [Fe/H] diagram, corresponding to the metallicity at which Type Ia supernovae begin to explode. Instead, we find that Type Ia supernova ejecta contribute to the abundances of all but the most metal-poor ([Fe/H] < -2.5) stars. We have also developed a chemical evolution model that tracks the star formation rate, Types II and Ia supernova explosions, and supernova feedback. Without metal enhancement in the supernova blowout, massive amounts of gas loss define the history of all dSphs except Fornax, the most luminous in our sample. All six of the best-fit model parameters correlate with dSph luminosity but not with velocity dispersion, half-light radius, or Galactocentric distance.
78 - A. K. Dupree , 2009
Spectra of the He I 10830 Angstrom line were obtained with NIRSPEC on the Keck 2 telescope for metal-deficient field giant stars. This line is ubiquitous in stars with T_eff greater than 4500K and M_V fainter than -1.5. Fast outflows are detected fro m the majority of stars and about 40 percent of the outflows have sufficient speed to allow escape of material from the star as well as from a globular cluster. Outflow speeds and line strengths do not depend on metallicity suggesting the driving mechanism for these winds derives from magnetic and/or hydrodynamic processes. Gas outflows are present in every luminous giant, but are not detected in all stars of lower luminosity indicating possible variability. Mass loss rates ranging from 3X10(-10) to 6X10(-8) solar mass/yr estimated from the Sobolev approximation represent values with evolutionary significance for red giant branch (RGB) and red horizontal branch (RHB) stars. We estimate that 0.2 M_sun will be lost on the RGB, and the torque of this wind can account for observations of slowly rotating RHB stars in the field. About 0.1-0.2 M_sun will be lost on the RHB itself. This first empirical determination of mass loss on the RHB may contribute to the appearance of extended horizontal branches in globular clusters. The spectra appear to resolve the problem of missing intracluster material in globular clusters. Opportunities exist for wind smothering of dwarf stars by winds from the evolved population, possibly leading to surface pollution in regions of high stellar density.
This paper describes a new Heterodyne Array Receiver Programme (HARP) and Auto-Correlation Spectral Imaging System (ACSIS) that have recently been installed and commissioned on the James Clerk Maxwell Telescope (JCMT). The 16-element focal-plane arra y receiver, operating in the submillimetre from 325 to 375 GHz, offers high (three-dimensional) mapping speeds, along with significant improvements over single-detector counterparts in calibration and image quality. Receiver temperatures are $sim$120 K across the whole band and system temperatures of $sim$300K are reached routinely under good weather conditions. The system includes a single-sideband filter so these are SSB figures. Used in conjunction with ACSIS, the system can produce large-scale maps rapidly, in one or more frequency settings, at high spatial and spectral resolution. Fully-sampled maps of size 1 square degree can be observed in under 1 hour. The scientific need for array receivers arises from the requirement for programmes to study samples of objects of statistically significant size, in large-scale unbiased surveys of galactic and extra-galactic regions. Along with morphological information, the new spectral imaging system can be used to study the physical and chemical properties of regions of interest. Its three-dimensional imaging capabilities are critical for research into turbulence and dynamics. In addition, HARP/ACSIS will provide highly complementary science programmes to wide-field continuum studies, and produce the essential preparatory work for submillimetre interferometers such as the SMA and ALMA.
Measurements of the asymmetry of the emission peaks in the core of the Ca II H line for 105 giant stars are reported. The asymmetry is quantified with the parameter V/R, defined as the ratio between the maximum number of counts in the blueward peak a nd the redward peak of the emission profile. The Ca II H and K emission lines probe the differential motion of certain chromospheric layers in the stellar atmosphere. Data on V/R for the Ca II K line are drawn from previous papers and compared to the analogous H line ratio, the H and K spectra being from the same sets of observations. It is found that the H line V/R value is +0.04 larger, on average, than the equivalent K line ratio, however, the difference varies with B-V color. Red giants cooler than B-V = 1.2 are more likely to have the H line V/R larger than the K line V/R, whereas the opposite is true for giants hotter than B-V = 1.2. The differences between the Ca II H and K line asymmetries could be caused by the layers of chromospheric material from which these emission features arise moving with different velocities in an expanding outflow.
We present the results of an observational study of the efficiency of deep mixing in globular cluster red giants as a function of stellar metallicity. We determine [C/Fe] abundances based on low-resolution spectra taken with the Kast spectrograph on the 3m Shane telescope at Lick Observatory. Spectra centered on the 4300 Angstrom CH absorption band were taken for 42 bright red giants in 11 Galactic globular clusters ranging in metallicity from M92 ([Fe/H]=-2.29) to NGC 6712 ([Fe/H]=-1.01). Carbon abundances were derived by comparing values of the CH bandstrength index S2(CH) measured from the data with values measured from a large grid of SSG synthetic spectra. Present-day abundances are combined with theoretical calculations of the time since the onset of mixing, which is also a function of stellar metallicity, to calculate the carbon depletion rate across our metallicity range. We find that the carbon depletion rate is twice as high at a metallicity of [Fe/H]=-2.3 than at [Fe/H]=-1.3, which is a result qualitatively predicted by some theoretical explanations of the deep mixing process.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا