ترغب بنشر مسار تعليمي؟ اضغط هنا

The quantum behaviour of mechanical resonators is a new and emerging field driven by recent experiments reaching the quantum ground state. The high frequency, small mass, and large quality-factor of carbon nanotube resonators make them attractive for quantum nanomechanical applications. A common element in experiments achieving the resonator ground state is a second quantum system, such as coherent photons or superconducting device, coupled to the resonators motion. For nanotubes, however, this is a challenge due to their small size. Here, we couple a carbon nanoelectromechanical (NEMS) device to a superconducting circuit. Suspended carbon nanotubes act as both superconducting junctions and moving elements in a Superconducting Quantum Interference Device (SQUID). We observe a strong modulation of the flux through the SQUID from displacements of the nanotube. Incorporating this SQUID into superconducting resonators and qubits should enable the detection and manipulation of nanotube mechanical quantum states at the single-phonon level.
We have investigated electrical transport through the molecular model systems benzenedithiol, benzenediamine, hexanedithiol and hexanediamine. Conductance histograms under different experimental conditions indicate that measurements using mechanicall y controllable break junctions in vacuum are limited by the surface density of molecules at the contact. Hexanedithiol histograms typically exhibit a broad peak around 7 * 10^{-4} G_0. In contrast to recent results on STM-based break junctions in solution we find that the spread in single-molecule conductance is not reduced by amino anchoring groups. Histograms of hexanediamine exhibit a very wide peak around 4 * 10^{-4} G_0. For both benzenedithiol and benzenediamine we observe a large variability in low-bias conductance. We attribute these features to the slow breaking of the lithographic mechanically controllable break junctions and the absence of a solvent that may enable molecular readsorption after bond breaking. Nevertheless, we have been able to acquire reproducible current-voltage characteristics of benzenediamine and benzenedithiol using a statistical measurement approach. Benzenedithiol measurements yield a conductance gap of about 0.9 V at room temperature and 0.6 V at 77 K. In contrast, the current-voltage characteristics of benzenediamine-junctions typically display conductance gaps of about 0.9 V at both temperatures.
We present results on electromigrated Au nanojunctions broken near the conductance quantum $77.5 mu$S. At room temperature we find that wires, initially narrowed by an actively-controlled electromigration technique down to a few conductance quanta, c ontinue to narrow after removing the applied voltage. Separate electrodes form as mobile gold atoms continuously reconfigure the constriction. We find, from results obtained on over 300 samples, no evidence for gold cluster formation in junctions broken without an applied voltage, implying that gold clusters may be avoided by using this self-breaking technique.
The collective charge density wave (CDW) conduction is modulated by a transverse single-particle current in a transistor-like device. Nonequilibrium conditions in this geometry lead to an exponential reduction of the depinning threshold, allowing the CDWs to slide for much lower bias fields. The results are in excellent agreement with a recently proposed dynamical model in which wrinkles in the CDW wavefronts are ironed by the transverse current. The experiment might have important implications for other driven periodic media, such as moving vortex lattices or striped phases in high-Tc superconductors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا