ترغب بنشر مسار تعليمي؟ اضغط هنا

169 - L. Jiao , H. Q. Yuan , Y. Kohama 2013
We report measurements of magnetic quantum oscillations and specific heat at low temperatures across a field-induced antiferromagnetic quantum critical point (QCP)(B_{c0}approx50T) of the heavy-fermion metal CeRhIn_5. A sharp magnetic-field induced F ermi surface reconstruction is observed inside the antiferromagnetic phase. Our results demonstrate multiple classes of QCPs in the field-pressure phase diagram of this heavy-fermion metal, pointing to a universal description of QCPs. They also suggest that robust superconductivity is promoted by unconventional quantum criticality of a fluctuating Fermi surface.
Variant approaches, either based on the Fermi surface nesting or started from the proximity to a Mott-insulator, were proposed to elucidate the physics in iron pnictides, but no consensus has been reached. A fundamental problem concerns the nature of their 3d electrons. Here we report the magnetoresistivity (rho_xx) and the Hall resistivity (rho_xy) of Ba(Fe1-xCox)2As2 (x=0 and 0.05) in a magnetic field of up to 55T. The magnetic transition is extremely robust against magnetic field, giving strong evidence that the magnetic ordering is formed by local moments. The magnetic state is featured with a huge magnetoresistance and a distinguished Hall resistivity, rho_xy(H), which shows a pronounced parabolic field dependence, while the paramagnetic state shows little magnetoresistance and follows a simple linear magnetic field dependence on the Hall resistivity. Analyses of our data, based on a two-carrier model, demonstrate that the electron carriers in the magnetic state rapidly increase upon applying a magnetic field, partially compensating the loss of electron carriers at T_M. We argue that the 3d-electrons in Ba(Fe1-xCox)2As2 are divided into those who are close to forming localized moments controlling the magnetic transition and the others giving rise to complex transport properties through their interaction with the former.
74 - Xin Lu , W. K. Park , H. Q. Yuan 2009
Point-contact Andreev reflection spectroscopy (PCARS) is applied to investigate the gap structure in iron pnictide single crystal superconductors of the AFe_2As_2 (A=Ba, Sr) family (Fe-122). The observed point-contact junction conductance curves, G(V ), can be divided into two categories: one where Andreev reflection is present for both (Ba_{0.6}K_{0.4})Fe_2As_2 and Ba(Fe_{0.9}Co_{0.1})_2As_2, and the other with a V^{2/3} background conductance universally observed extending even up to 100 meV for Sr_{0.6}Na_{0.4}Fe_2As_2 and Sr(Fe_{0.9}Co_{0.1})_2As_2. The latter is also observed in point-contact junctions on the nonsuperconducting parent compound BaFe_2As_2. Mesoscopic phase-separated coexistence of magnetic and superconducting orders is considered to explain distinct behaviors in the superconducting samples. For Ba_{0.6}K_{0.4}Fe_2As_2, double peaks due to Andreev reflection with strongly-sloping background are frequently observed for point-contacts on freshly-cleaved c-axis surfaces. If normalized by a background baseline and analyzed by the Blonder-Tinkham-Klapwijk model, the data show a gap size ~3.0-4.0 meV with 2Delta_0/k_BT_c ~ 2.0-2.6, consistent with the smaller gap size reported in the LnFeAsO family (Fe-1111). For the Ba(Fe_{0.9}Co_{0.1})_2As_2, G(V) curves typically display a zero-bias conductance peak.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا