ترغب بنشر مسار تعليمي؟ اضغط هنا

We review the current status of the global DGLAP analysis of nuclear parton distribution functions, nPDFs, focusing on the recent EPS09 analysis, whose output, EPS09NLO, is the best-constrained NLO nPDF set on the market. Collinear factorization is f ound to work very well in the kinematical region studied. With the error sets released in the EPS09 package one can compute how the nPDF-related uncertainties propagate into factorizable nuclear hard-process cross sections. A comparison with the other existing NLO nPDF sets is shown, and the BRAHMS forward-$eta$ hadron data from d+Au collisions are discussed in the light of the EPS09 nPDFs and their error sets.
We discuss the longitudinal structure function in nuclear DIS at small $x$. We work within the framework of universal parton densities obtained in DGLAP analyses at NLO. We show that the nuclear effects on the longitudinal structure function closely follow those on the gluon distribution. The error analyses available from newest sets of nuclear PDFs also allow to propagate the uncertainties from present data. In this way, we evaluate the minimal sensitivity required in future experiments for this observable to improve the knowledge of the nuclear glue. We further discuss the uncertainties on the extraction of $F_2$ off nuclear targets, introduced by the usual assumption that the ratio $F_L/F_2$ is independent of the nuclear size. We focus on the kinematical regions relevant for future lepton-ion colliders.
In this talk, we introduce our recently completed next-to-leading order (NLO) global analysis of the nuclear parton distribution functions (nPDFs) called EPS09 - a higher order successor to the well-known leading-order (LO) analysis EKS98 and also to our previous LO work EPS08. As an extension to similar global analyses carried out by other groups, we complement the data from deep inelastic $l+A$ scattering and Drell-Yan dilepton measurements in p+$A$ collisions by inclusive midrapidity pion production data from d+Au collisions at RHIC, which results in better constrained gluon distributions than before. The most important new ingredient, however, is the detailed error analysis, which employs the Hessian method and which allows us to map out the parameter-space vicinity of the best-fit to a collection of nPDF error sets. These error sets provide the end-user a way to compute how the PDF-uncertainties will propagate into the cross sections of his/her interest. The EPS09 package to be released soon, will contain both the NLO and LO results for the best fits and the uncertainty sets.
We present a next-to-leading order (NLO) global DGLAP analysis of nuclear parton distribution functions (nPDFs) and their uncertainties. Carrying out an NLO nPDF analysis for the first time with three different types of experimental input -- deep ine lastic $ell$+A scattering, Drell-Yan dilepton production in p+$A$ collisions, and inclusive pion production in d+Au and p+p collisions at RHIC -- we find that these data can well be described in a conventional collinear factorization framework. Although the pion production has not been traditionally included in the global analyses, we find that the shape of the nuclear modification factor $R_{rm dAu}$ of the pion $p_T$-spectrum at midrapidity retains sensitivity to the gluon distributions, providing evidence for shadowing and EMC-effect in the nuclear gluons. We use the Hessian method to quantify the nPDF uncertainties which originate from the uncertainties in the data. In this method the sensitivity of $chi^2$ to the variations of the fitting parameters is mapped out to orthogonal error sets which provide a user-friendly way to calculate how the nPDF uncertainties propagate to any factorizable nuclear cross-section. The obtained NLO and LO nPDFs and the corresponding error sets are collected in our new release called {ttfamily EPS09}. These results should find applications in precision analyses of the signatures and properties of QCD matter at the LHC and RHIC.
We present an improved leading-order global DGLAP analysis of nuclear parton distribution functions (nPDFs), supplementing the traditionally used data from deep inelastic lepton-nucleus scattering and Drell-Yan dilepton production in proton-nucleus c ollisions, with inclusive high-$p_T$ hadron production data measured at RHIC in d+Au collisions. With the help of an extended definition of the $chi^2$ function, we now can more efficiently exploit the constraints the different data sets offer, for gluon shadowing in particular, and account for the overall data normalization uncertainties during the automated $chi^2$ minimization. The very good simultaneous fit to the nuclear hard process data used demonstrates the feasibility of a universal set of nPDFs, but also limitations become visible. The high-$p_T$ forward-rapidity hadron data of BRAHMS add a new crucial constraint into the analysis by offering a direct probe for the nuclear gluon distributions -- a sector in the nPDFs which has traditionally been very badly constrained. We obtain a strikingly stronger gluon shadowing than what has been estimated in previous global analyses. The obtained nPDFs are released as a parametrization called EPS08.
In this talk, we shortly report results from our recent global DGLAP analysis of nuclear parton distributions. This is an extension of our former EKS98-analysis improved with an automated $chi^2$ minimization procedure and uncertainty estimates. Alth ough our new analysis show no significant deviation from EKS98, a sign of a significantly stronger gluon shadowing could be seen in the RHIC BRAHMS data.
In this talk, we present the results from our recent global reanalysis of nuclear parton distribution functions (nPDFs), where the DGLAP-evolving nPDFs are constrained by nuclear hard process data from deep inelastic $l+A$ scattering (DIS) and the Dr ell-Yan (DY) process in $p+A$ collisions, and by sum rules. The main improvements over our earlier work {em EKS98} are the automated $chi^2$ minimization, better controllable fit functions and possibility for error estimates. The obtained 16-parameter fit to N=514 datapoints is good, $chi^2/{rm d.o.f}=0.82$. Fit quality comparison and the error estimates obtained show that the old {em EKS98} parametrization is fully consistent with the present automated reanalysis. Comparison with other global nPDF analyses is presented as well. Within the DGLAP framework we also discuss the possibility of incorporating a clearly stronger gluon shadowing, which is suggested by the RHIC BRAHMS data from d+Au collisions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا