ترغب بنشر مسار تعليمي؟ اضغط هنا

Reactor antineutrino experiments have the ability to search for neutrino oscillations independent of reactor flux predictions using a relative measurement of the neutrino flux and spectrum across a range of baselines. The range of accessible oscillat ion parameters are determined by the baselines of the detector arrangement. We examine the sensitivity of short-baseline experiments with more than one detector and discuss the optimization of a second, far detector. The extended reach in baselines of a 2-detector experiment will improve sensitivity to short-baseline neutrino oscillations while also increasing the ability to distinguish between 3+1 mixing and other non-standard models.
Reactor antineutrinos are used to study neutrino oscillation, search for signatures of non-standard neutrino interactions, and to monitor reactor operation for safeguard applications. The flux and energy spectrum of reactor antineutrinos can be predi cted from the decays of the nuclear fission products. A comparison of recent reactor calculations with past measurements at baselines of 10-100m suggests a 5.7% deficit. Precision measurements of reactor antineutrinos at very short baselines O(1-10 m) can be used to probe this anomaly and search for possible oscillations into sterile neutrino species. This paper studies the experimental requirements for a new reactor antineutrino measurement at very short baselines and calculates the sensitivity of various scenarios. We conclude that an experiment at a typical research reactor provides 5{sigma} discovery potential for the favored oscillation parameter space with 3 years of data collection.
52 - H. P. Mumm 2011
We report the results of an improved determination of the triple correlation $D P cdot(p_{e}times p_{ u})$ that can be used to limit possible time-reversal invariance in the beta decay of polarized neutrons and constrain extensions to the Standard Mo del. Our result is $D=(-0.96pm 1.89 (stat)pm 1.01 (sys))times 10^{-4}$. The corresponding phase between g_A and g_V is $phi_{AV} = 180.013^circpm0.028^circ$ (68 % confidence level). This result represents the most sensitive measurement of D in beta decay.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا