ترغب بنشر مسار تعليمي؟ اضغط هنا

367 - A. Barcza , Z. Gercsi , H. Michor 2012
We use neutron diffraction, magnetometry and low temperature heat capacity to probe giant magneto-elastic coupling in CoMnSi-based antiferromagnets and to establish the origin of the entropy change that occurs at the metamagnetic transition in such c ompounds. We find a large difference between the electronic density of states of the antiferromagnetic and high magnetisation states. The magnetic field-induced entropy change is composed of this contribution and a significant counteracting lattice component, deduced from the presence of negative magnetostriction. In calculating the electronic entropy change, we note the importance of using an accurate model of the electronic density of states, which here varies rapidly close to the Fermi energy.
The heavy fermion system CeNi9Ge4 exhibits a paramagnetic ground state with remarkable features such as: a record value of the electronic specific heat coefficient in systems with a paramagnetic ground state, gamma = C/T simeq 5.5 J/molK^2 at 80 mK, a temperature-dependent Sommerfeld-Wilson ratio, R=chi/gamma, below 1 K and an approximate single ion scaling of the 4f-magnetic specific heat and susceptibility. These features are related to a rather small Kondo energy scale of a few Kelvin in combination with a quasi-quartet crystal field ground state. Tuning the system towards long range magnetic order is accomplished by replacing a few at.% of Ni by Cu or Co. Specific heat, susceptibility and resistivity studies reveal T_N sim 0.2 K for CeNi8CuGe4 and T_N sim 1 K for CeNi8CoGe4. To gain insight whether the transition from the paramagnetic NFL state to the magnetically ordered ground state is connected with a heavy fermion quantum critical point we performed specific heat and ac susceptibility studies and utilized the mu SR technique and quasi-elastic neutron scattering.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا