ترغب بنشر مسار تعليمي؟ اضغط هنا

We performed a search for WLQs in the spectroscopic data from the Sloan Digital Sky Survey Data Release 7 based on Kohonen self-organising maps for nearly 10^5 quasar spectra. The final sample consists of 365 quasars and includes in particular a subs ample of 46 WLQs with equivalent widths W(MgII) < 11 A and W(CIV) < 4.8 A. We compared various properties of the WLQs with those of control samples of ordinary quasars. Particular attention was paid to selection effects. The WLQs have, on average, significantly higher luminosities, Eddington ratios, and accretion rates. About half of the excess comes from a selection bias, but an intrinsic excess remains probably caused primarily by higher accretion rates. The spectral energy distribution shows a bluer continuum at rest-frame wavelengths > 1500 A. The variability in the optical and UV is relatively low, even taking the variability-luminosity anti-correlation into account. The percentage of radio detected quasars and of core-dominant radio sources is significantly higher than for the control sample, whereas the mean radio-loudness is lower. The properties of our WLQ sample can be consistently understood assuming that it consists of a mix of quasars at the beginning of a stage of increased accretion activity and of beamed radio-quiet quasars. (Abstract modified to match the arXiv format)
85 - H. Meusinger , V. Weiss 2013
We compiled a catalogue of about 4000 SDSS quasars including individual estimators V for the variability strength, virial black hole masses M, and mass accretion rates dM/dt from the Davis-Laor scaling relation. We confirm significant anti-correlatio ns between V and dM/dt, the Eddington ratio, and the bolometric luminosity L, respectively. A weak, statistically not significant positive trend is indicated for the dependence of V on M. As a side product, we find a strong correlation of the radiative efficiency with M and show that this trend is most likely produced by selection effects in combination with the mass errors and the use of the scaling relation for dM/dt. The anti-correlations found for V cannot be explained in such a way. The strongest anti-correlation is found with dM/dt. However, it is difficult to decide which of the quantities (L, Eddington ratio, dM/dt) is intrinsically correlated with V and which of the observed correlations are produced by the relations between these quantities. A V-dM/dt anti-correlation is qualitatively expected for the strongly inhomogeneous accretion disks. We argue that several observed variability properties are not adequately explained by the simple multi-temperature black-body model of a standard disk and suggest to check whether the strongly inhomogeneous disk model is capable of reproducing these observations better.
We exploit the spectral archive of the Sloan Digital Sky Survey (SDSS) Data Release 7 to select unusual quasar spectra. The selection method is based on a combination of the power of self-organising maps and the visual inspection of a huge number of spectra. Self-organising maps were applied to nearly 10^5 spectra classified as quasars by the SDSS pipeline. Particular attention was paid to minimise possible contamination by rare peculiar stellar spectral types. We present a catalogue of 1005 quasars with unusual spectra. This large sample provides a useful resource for both studying properties and relations of/between different types of unusual quasars and selecting particularly interesting objects. The spectra are grouped into six types. All these types turn out to be on average more luminous than comparison samples of normal quasars after a statistical correction is made for intrinsic reddening. Both the unusual broad absorption line (BAL) quasars and the strong iron emitters have significantly lower radio luminosities than normal quasars. We also confirm that strong BALs avoid the most radio-luminous quasars. Finally, we create a sample of quasars similar to the two mysterious objects discovered by Hall et al. (2002) and briefly discuss the quasar properties and possible explanations of their highly peculiar spectra. (Abstract modified to match the arXiv format)
We present a new approach to analysing the dependence of quasar variability on rest-frame wavelengths. We exploited the spectral archive of the Sloan Digital Sky Survey (SDSS) to create a sample of more than 9000 quasars in the Stripe 82. The quasar catalogue was matched with the Light Motion Curve Catalogue for SDSS Stripe 82 and individual first-order structure functions were computed. The structure functions are used to create a variability indicator that is related to the same intrinsic timescales for all quasars (1 to 2 yr in the rest frame). We study the variability ratios for adjacent SDSS filter bands as a function of redshift. While variability is almost always stronger in the bluer passband compared to the redder, the variability ratio depends on whether strong emission lines contribute to either one band or the other. The variability ratio-redshift relations resemble the corresponding colour index-redshift relations. From the comparison with Monte Carlo simulations of variable quasar spectra we find that the observed variability ratio-redshift relations are closely fitted assuming that (a) the r.m.s. fluctuation of the quasar continuum follows a power law-dependence on the intrinsic wavelength with an exponent -2 (i.e., bluer when brighter) and (b) the variability of the emission line flux is only about 10% of that of the underlying continuum. These results, based upon the photometry of more than 8000 quasars, confirm the previous findings by Wilhite et al. (2005) from 315 quasars with repeated SDSS spectroscopy. Finally, we find that quasars with unusual spectra and weak emission lines tend to have less variability than conventional quasars. This trend is opposite to what is expected from the dilution effect of variability due to line emission and may be indicative of high Eddington ratios in these unconventinal quasars.
We announce the discovery of a quasar behind the disk of M31, which was previously classified as a remarkable nova in our neighbour galaxy. The paper is primarily aimed at the outburst of J004457+4123 (Sharov 21), with the first part focussed on the optical spectroscopy and the improvement in the photometric database. Both the optical spectrum and the broad band spectral energy distribution of Sharov 21 are shown to be very similar to that of normal, radio-quiet type 1 quasars. We present photometric data covering more than a century and resulting in a long-term light curve that is densely sampled over the past five decades. The variability of the quasar is characterized by a ground state with typical fluctuation amplitudes of ~0.2 mag around B~20.5, superimposed by a singular flare of ~2 yr duration (observer frame) with the maximum at 1992.81 where the UV flux has increased by a factor of ~20. The total energy in the flare is at least three orders of magnitudes higher than the radiated energy of the most luminous supernovae, provided that it comes from an intrinsic process and the energy is radiated isotropically. The profile of the flare light curve appears to be in agreement with the standard predictions for a stellar tidal disruption event where a ~10 M_sun giant star was shredded in the tidal field of a ~2...5 10^8 M_sun black hole. The short fallback time derived from the light curve requires an ultra-close encounter where the pericentre of the stellar orbit is deep within the tidal disruption radius. Gravitational microlensing provides an alternative explanation, though the probability of such a high amplification event is very low.
We are conducting a large program to classify newly discovered Milky Way star cluster candidates from the list of Froebrich, Scholz & Raftery (2007). Here we present deep NIR follow-up observations from ESO/NTT of 14 star cluster candidates. We show that the combined analysis of star density maps and colour-colour/magnitude diagrams derived from deep near-infrared imaging is a viable tool to reliably classify new stellar clusters. This allowed us to identify two young clusters with massive stars, three intermediate age open clusters, and two globular cluster candidates among our targets. The remaining seven objects are unlikely to be stellar clusters. Among them is the object FSR1767 which has previously been identified as a globular cluster using 2MASS data by Bonatto et al. (2007). Our new analysis shows that FSR1767 is not a star cluster. We also summarise the currently available follow-up analysis of the FSR candidates and conclude that this catalogue may contain a large number of new stellar clusters, probably dominated by old open clusters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا