ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work we consider the phase transition from ordered to disordered states that occur in the Vicsek model of self-propelled particles. This model was proposed to describe the emergence of collective order in swarming systems. When noise is added to the motion of the particles, the onset of collective order occurs through a dynamical phase transition. Based on their numerical results, Vicsek and his colleagues originally concluded that this phase transition was of second order (continuous). However, recent numerical evidence seems to indicate that the phase transition might be of first order (discontinuous), thus challenging Vicseks original results. In this work we review the evidence supporting both aspects of this debate. We also show new numerical results indicating that the apparent discontinuity of the phase transition may in fact be a numerical artifact produced by the artificial periodicity of the boundary conditions.
Many studies on animal and human movement patterns report the existence of scaling laws and power-law distributions. Whereas a number of random walk models have been proposed to explain observations, in many situations individuals actually rely on me ntal maps to explore strongly heterogeneous environments. In this work we study a model of a deterministic walker, visiting sites randomly distributed on the plane and with varying weight or attractiveness. At each step, the walker minimizes a function that depends on the distance to the next unvisited target (cost) and on the weight of that target (gain). If the target weight distribution is a power-law, $p(k)sim k^{-beta}$, in some range of the exponent $beta$, the foraging medium induces movements that are similar to Levy flights and are characterized by non-trivial exponents. We explore variations of the choice rule in order to test the robustness of the model and argue that the addition of noise has a limited impact on the dynamics in strongly disordered media.
We show that systems with negative specific heat can violate the zeroth law of thermodynamics. By both numerical simulations and by using exact expressions for free energy and microcanonical entropy it is shown that if two systems with the same inten sive parameters but with negative specific heat are thermally coupled, they undergo a process in which the total entropy increases irreversibly. The final equilibrium is such that two phases appear, that is, the subsystems have different magnetizations and internal energies at temperatures which are equal in both systems, but that can be different from the initial temperature.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا