ترغب بنشر مسار تعليمي؟ اضغط هنا

66 - H. Krawczynski 2010
X-ray polarimetry promises to give qualitatively new information about high-energy sources. Examples of interesting source classes are binary black hole systems, rotation and accretion powered neutron stars, Microquasars, Active Galactic Nuclei and G amma-Ray Bursts. Furthermore, X-ray polarimetry affords the possibility for testing fundamental physics, e.g. to observe signatures of light bending in the strong gravitational field of a black hole, to detect third order Quantum Electrodynamic effects in the magnetosphere of Magnetars, and to perform sensitive tests of Lorentz Invariance. In this paper we discuss scientific drivers of hard (>10 keV) X-ray polarimetry emphasizing how observations in the hard band can complement observations at lower energies (0.1 - 10 keV). Subsequently, we describe four different technical realizations of hard X-ray polarimeters suitable for small to medium sized space borne missions, and study their performance in the signal-dominated case based on Monte Carlo simulations. We end with confronting the instrument requirements for accomplishing the science goals with the capabilities of the four polarimeters.
103 - H. Krawczynski 2010
We report on the design and estimated performance of a balloon-borne hard X-ray polarimeter called HX-POL. The experiment uses a combination of Si and Cadmium Zinc Telluride detectors to measure the polarization of 50 keV-400 keV X-rays from cosmic s ources through the dependence of the angular distribution of Compton scattered photons on the polarization direction. On a one-day balloon flight, HX-POL would allow us to measure the polarization of bright Crab-like sources for polarization degrees well below 10%. On a longer (15-30 day) flight from Australia or Antarctica, HX-POL would be be able to measure the polarization of bright galactic X-ray sources down to polarization degrees of a few percent. Hard X-ray polarization measurements provide unique venues for the study of particle acceleration processes by compact objects and relativistic outflows. In this paper, we discuss the overall instrument design and performance. Furthermore, we present results from laboratory tests of the Si and CZT detectors.
This is a report on the findings of the extragalactic science working group for the white paper on the status and future of TeV gamma-ray astronomy. The white paper was commissioned by the American Physical Society, and the full white paper can be fo und on astro-ph (arXiv:0810.0444). This detailed section discusses extragalactic science topics including active galactic nuclei, cosmic ray acceleration in galaxies, galaxy clusters and large scale structure formation shocks, and the study of the extragalactic infrared and optical background radiation. The scientific potential of ground based gamma-ray observations of Gamma-Ray Bursts and dark matter annihilation radiation is covered in other sections of the white paper.
80 - V. V. Bugaev 2007
We estimate the limiting angular resolution and detection area for an array of 3 large-aperture Imaging Atmospheric Cherenkov Telescopes. We consider an idealized IACT system in order to understand the limitations imposed by the intrinsic nature of t he atmospheric showers and geometry of the detector configuration. The idealization includes the assumptions of a perfect optical system and the absence of the night sky background with the goal of finding the optimum camera geometry and array configuration independent of detailed assumptions about the telescope design. The showers are simulated using the ALTAI code for the altitude of 2700 m corresponding to one of possible future sites for a new northern-hemisphere array. The optimal design depends on the target energy range; for each energy we vary both the cell length (telescope spacing) and the image processing parameters in order to maximize the signal-to-noise ratio. We then present the resulting values of the detection area and the angular resolution for this energy dependent optimization. We discuss the dependence of these quantities on the field of view of the telescopes and pixel size of the camera.
74 - H. Krawczynski 2007
In recent years, ground-based gamma-ray observatories have made a number of important astrophysical discoveries which have attracted the attention of the wider scientific community. The Division of Astrophysics of the American Physical Society has re quested the preparation of a white paper on the status and future of ground-based gamma-ray astronomy to define the science goals of the future observatory, to determine the performance specifications, and to identify the areas of necessary technology development. In this contribution we give a brief overview of the activities of the current white paper team and invite the international community to contribute to the white paper.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا