ترغب بنشر مسار تعليمي؟ اضغط هنا

160 - S. Hauf 2010
We present {gamma} spectroscopy validation measurements for the Geant4 radioactive decay simulation for a selected range of isotopes using a simple experimental setup. Using these results we point out problems in the decay simulation and where they may originate from.
We report a photoinduced change of the coercive field, i.e., a photocoercivity effect (PCE), under very low intensity illumination of a low-doped (Ga,Mn)As ferromagnetic semiconductor. We find a strong correlation between the PCE and the sample resis tivity. Spatially resolved dynamics of the magnetization reversal rule out any role of thermal heating in the origin of this PCE, and we propose a mechanism based on the light-induced lowering of the domain wall pinning energy. The PCE is local and reversible, allowing writing and erasing of magnetic images using light.
Pressure-dependent transmittance and reflectance spectra of TiOBr and TiOCl single crystals at room temperature suggest the closure of the Mott-Hubbard gap, i.e., the gap is filled with additional electronic states extending down to the far-infrared range. According to pressure-dependent x-ray powder diffraction data the gap closure coincides with a structural phase transition. The transition in TiOBr occurs at slightly lower pressure ($p$=14 GPa) compared to TiOCl ($p$=16 GPa) under hydrostatic conditions, which is discussed in terms of the chemical pressure effect. The results of pressure-dependent transmittance measurements on TiOBr at low temperatures reveal similar effects at 23 K, where the compound is in the spin-Peierls phase at ambient pressure.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا