ترغب بنشر مسار تعليمي؟ اضغط هنا

This work discusses the prospects of antiparticle flux measurements with the proposed PEBS detector. The project foresees long duration balloon flights at one of Earths poles at an altitude of 40 km. The sky coverage of flights at the poles is presen ted. In addition, cosmic-ray measurements at the poles (small rigidity cut-offs) give the possibility to study solar modulation effects down to energies of about 0.1 GeV. Furthermore, systematic effects due to interactions of cosmic rays in the atmosphere are important. These effects were studied with the Planetocosmics simulation software based on GEANT4 in the energy range 0.1 - 1000 GeV.
64 - H. Gast , R. Greim , T. Kirn 2009
A precision measurement of the cosmic-ray positron spectrum may help to solve the puzzle of the nature of dark matter. Pairwise annihilation of neutralinos, predicted by some supersymmetric extensions to the standard model of particle physics, may le ave a distinct feature in the cosmic-ray positron spectrum. As the available data are limited both in terms of statistics and energy range, we are developing a balloon-borne detector (PEBS) with a large acceptance of 4000 cm^2 sr. A superconducting magnet creating a field of 0.8 T and a tracking device consisting of scintillating fibers of 0.25 mm diameter with silicon photomultiplier readout will allow rigidity and charge determination to energies above 100 GeV. The dominant proton background is suppressed by the combination of an electromagnetic calorimeter and a transition radiation detector consisting of fleece layers interspersed with straw-tube proportional counters. The calorimeter uses a sandwich of tungsten and scintillating fibers that are again read out by silicon photomultipliers.
75 - H. Gast , R. Greim , T. Kirn 2007
Using thin scintillating fibers with Silicon Photomultiplier (SiPM) readout a mo dular high-resolution charged-particle tracking detector has been designed. The fiber modules consist of 2 x 5 layers of 128 round multiclad scintillating fiber s of 0.2 50mm diameter. The fibers are read out by four SiPM arrays (8mm x 1mm) e ach on either end of the module.
73 - C. H. Chung , H. Gast , J. Olzem 2007
A recent analysis of cosmic-ray data from a space borne experiment by the AMS collaboration supports the observation of an excess in the cosmic-ray positron spectrum by previous balloon experiments. The combination of the various experimental data es tablishes a deviation from the expected background with a significance of more than four standard deviations. The observed change in the spectral index cannot be explained without introducing a new source of positrons. When interpreted within the MSSM a consistent description of the antiproton spectrum, the diffuse gamma-ray flux and the positron fraction is obtained which is compatible with all other experimental data, including recent WMAP data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا