ترغب بنشر مسار تعليمي؟ اضغط هنا

To investigate the interaction between the nucleon $N$ and nucleon resonance $N(1535)1/2^-$, the $eta d$ threshold structure, connected to the isoscalar $S$-wave $N$-$N(1535)1/2^-$ system, has been experimentally studied in the $gamma{d}${$to$}$pi^0e ta{d}$ reaction at incident photon energies ranging from the reaction threshold to 1.15 GeV. A strong enhancement is observed near the $eta d$ threshold over the three-body phase-space contribution in the $eta d$ invariant-mass distribution. An analysis incorporating the known isovector resonance $mathcal{D}_{12}$ with a spin-parity of $2^+$ in the $pi^0d$ channel has revealed the existence of a narrow isoscalar resonance-like structure $mathcal{D}_{eta d}$ with $1^-$ in the $eta d$ system. The Breit-Wigner mass of $mathcal{D}_{eta d}$ is found to be $2.425^{-0.006}_{+0.003}$ GeV, located just close to the $eta d$ threshold, and the width is $0.034_{-0.003}^{+0.004}$ GeV. The $mathcal{D}_{eta d}$ would be a predicted isoscalar $1^-$ $eta NN$ bound state from the $eta NN$ and $pi NN$ coupled-channel calculation, or $eta d$ virtual state owing to strong $eta d$ attraction.
Unconventional features of relativistic Dirac/Weyl quasi-particles in topological materials are most evidently manifested in the 2D quantum Hall effect (QHE), whose variety is further enriched by their spin and/or valley polarization. Although its ex tension to three dimensions has been long-sought and inspired theoretical proposals, material candidates have been lacking. Here we have discovered valley-contrasting spin-polarized Dirac fermions in a multilayer form in bulk antiferromagnet BaMnSb$_2$, where the out-of-plane Zeeman-type spin splitting is induced by the in-plane inversion symmetry breaking and spin-orbit coupling (SOC) in the distorted Sb square net. Furthermore, we have observed well-defined quantized Hall plateaus together with vanishing interlayer conductivity at low temperatures as a hallmark of the half-integer QHE in a bulk form. The Hall conductance of each layer is found to be nearly quantized to $2(N+1/2)e^2/h$ with $N$ being the Landau index, which is consistent with two spin-polarized Dirac valleys protected by the strong spin-valley coupling.
Photoproduction of the $omega$ meson on the proton has been experimentally studied near the threshold. The total cross sections are determined at incident energies ranging from 1.09 to 1.15 GeV. The 1/2 and 3/2 spin-averaged scattering length $a_{ome ga p}$ and effective range $r_{omega p}$ between the $omega$ meson and proton are estimated from the shape of the total cross section as a function of the incident photon energy: $a_{omega p} = left(-0.97^{+0.16_{rm stat}}_{-0.16_{rm stat}}{}^{+0.03_{rm syst}}_{-0.00_{rm syst}}right)+i left(0.07^{+0.15_{rm stat}}_{-0.14_{rm stat}}{}^{+0.17_{rm syst}}_{-0.09_{rm syst}}right)$ fm and $r_{omega p}=left(+2.78^{+0.68_{rm stat}}_{-0.54_{rm stat}}{}^{+0.11_{rm syst}}_{-0.13_{rm syst}}right)+ileft(-0.01^{+0.46_{rm stat}}_{-0.50_{rm stat}}{}^{+0.07_{rm syst}}_{-0.00_{rm syst}}right)$ fm, resulting in a repulsive force. The real and imaginary parts for $a_{omega p}$ and $r_{omega p}$ are determined separately for the first time. A small $P$-wave contribution does not affect the obtained values.
Coherent double neutral-pion photoproduction on the deuteron, $gamma{d}${$to$}$pi^0pi^0{d}$, has been experimentally studied at incident photon energies ranging from 0.75 to 1.15 GeV. The total cross section as a function of the $gamma{d}$ center-of- mass energy shows resonance-like behavior, which peaks at approximately 2.47 and 2.63 GeV. The measured angular distribution of deuteron emission is rather flat, which cannot be reproduced by the kinematics of quasi-free $pi^0pi^0$ production with deuteron coalescence. In $pi^0d $ invariant-mass distributions, a clear peak is observed at $2.14{pm}0.01$ GeV$/c^2$ with a width of $0.09{pm}0.01$ GeV$/c^2$. The spin-parity of this state is restricted to $1^+$, $2^+$ or $3^-$ from the angular distributions of the two $pi^0$s. The present work shows strong evidence for the existence of an isovector dibaryon resonance with a mass of 2.14 GeV$/c^2$. The $2^+$ assignment is consistent with the theoretically predicted ${cal{D}}_{12}$ state, and also with the energy dependence of the $pi{d}$ partial-wave amplitude $^3!P_2$ for the $pi^{pm}d${$to$}$pi^{pm}d$ and $pi^+d${$to$}${pp}$ reactions.
The total cross sections were measured for coherent double neutral-pion photoproduction on the deuteron at incident energies below 0.9 GeV for the first time. No clear resonance-like behavior is observed in the excitation function for $W_{gamma d}=2. 38$--2.61 GeV, where the $d^*(2380)$ dibaryon resonance observed at COSY is expected to appear. The measured excitation function is consistent with the existing theoretical calculation for this reaction. The upper limit of the total cross section is found to be $0.034$~$mu$b for the dibaryon resonance at $W_{gamma d}=2.37$~GeV (90% confidence level) in the $gamma d to pi^0pi^0 d$ reaction.
We have developed an event mixing technique to observe Bose-Einstein correlations (BEC) between two identical neutral pions produced in photo-induced reactions in the non-perturbative QCD energy region. It is found that the missing-mass consistency c ut and the pion-energy cut are essential for the event mixing method to effectively extract BEC observables. A Monte Carlo (MC) simulation is used to validate these constraints and confirms the efficiency of this method. Our work paves the way for similar BEC studies at lower energies where the multiplicity of emitted bosons is limited.
Differential cross sections for $gamma p to K^+Lambda(1405)$ and $gamma p to K^+Sigma^0(1385)$ reactions have been measured in the photon energy range from 1.5 to 2.4 GeV and the angular range of $0.8<cos(Theta)<1.0$ for the $K^+$ scattering angle in the center-of-mass system. This data is the first measurement of the $Lambda(1405)$ photoproduction cross section. The lineshapes of LamS measured in $Sigma^+pi^-$ and $Sigma^-pi^+$ decay modes were different with each other, indicating a strong interference of the isospin 0 and 1 terms of the $Sigmapi$ scattering amplitudes. The ratios of LamS production to SigS production were measured in two photon energy ranges: near the production threshold ($1.5<E_gamma<2.0$ GeV) and far from it ($2.0 <E_gamma<2.4$ GeV). The observed ratio decreased in the higher photon energy region, which may suggest different production mechanisms and internal structures for these hyperon resonances.
The cross section of the ${}^{16}{rm O}(p,p){}^{16}{rm O}(0^-,T=1)$ scattering was measured at a bombarding energy of 295 MeV in the momentum transfer range of $1.0 mathrm{fm^{-1}}$ $le$ $q_{rm c.m.}$ $le$ $2.1 mathrm{fm^{-1}}$. The isovector $0^-$ state at $E_x$ = 12.8 MeV is clearly separated from its neighboring states owing to the high energy resolution of about 30 keV. The cross section data were compared with distorted wave impulse approximation (DWIA) calculations employing shell-model wave functions. The observed cross sections around $q_{rm c.m.}$ $simeq$ $1.7 {rm fm^{-1}}$ are significantly larger than predicted by these calculations, suggesting pionic enhancement as a precursor of pion condensation in nuclei. The data are successfully reproduced by DWIA calculations using random phase approximation response functions including the $Delta$ isobar that predict pionic enhancement.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا