ترغب بنشر مسار تعليمي؟ اضغط هنا

118 - W. J. Zhang , S. K. He , H. F. Liu 2012
Superconducting Nb thin films with rectangular arrays of submicron antidots have been systemically investigated by transport measurements. In low fields, the magnetoresistance curves demonstrate well-defined dips at integral and rational numbers of f lux quanta per unit cell, which corresponds to a superconducting wire network-like regime. When the magnetic field is higher than a saturation field, interstitial vortices interrupt the collective oscillation in low fields and form vortex sublattice, where a larger magnetic field interval is observed. In higher fields, a crossover behavior from the interstitial sublattice state to a single-loop-like state is observed, characterized by oscillations with a period of $Phi_0/pi r_{eff}^2$, originating from the existence of edge superconducting states with a size $r_{eff}$ around the antidots.
273 - S. K. He , W. J. Zhang , H. F. Liu 2011
We present transport measurement results on superconducting Nb films with diluted triangular arrays (honeycomb and kagom{e}) of holes. The patterned films have large disk-shaped interstitial regions even when the edge-to-edge separations between near est neighboring holes are comparable to the coherence length. Changes in the field interval of two consecutive minima in the field dependent resistance $R(H)$ curves are observed. In the low field region, fine structures in the $R(H)$ and $T_c(H)$ curves are identified in both arrays. Comparison of experimental data with calculation results shows that these structures observed in honeycomb and kagom{e} hole arrays resemble those in wire networks with triangular and $T_3$ symmetries, respectively. Our findings suggest that even in these specified periodic hole arrays with very large interstitial regions, the low field fine structures are determined by the connectivity of the arrays
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا