ترغب بنشر مسار تعليمي؟ اضغط هنا

In this article we study the well-known strong lensing system SDSS J1004+4112. Not only does it host a large-separation lensed quasar with measured time-delay information, but several other lensed galaxies have been identified as well. A previously d eveloped strong lens inversion procedure that is designed to handle a wide variety of constraints, is applied to this lensing system and compared to results reported in other works. Without the inclusion of a tentative central image of one of the galaxies as a constraint, we find that the model recovered by the other constraints indeed predicts an image at that location. An inversion which includes the central image provides tighter constraints on the shape of the central part of the mass map. The resulting model also predicts a central image of a second galaxy where indeed an object is visible in the available ACS images. We find masses of 2.5x10^13 M_O and 6.1x10^13 M_O within a radius of 60 kpc and 110 kpc respectively, confirming the results from other authors. The resulting mass map is compatible with an elliptical generalization of a projected NFW profile, with r_s = 58_{-13}^{+21} arcsec and c_vir = 3.91 +/- 0.74. The orientation of the elliptical NFW profile follows closely the orientation of the central cluster galaxy and the overall distribution of cluster members.
We present new fully self-consistent models of the formation and evolution of isolated dwarf galaxies. We have used the publicly available N-body/SPH code HYDRA, to which we have added a set of star formation criteria, and prescriptions for chemical enrichment (taking into account contributions from both SNIa and SNII), supernova feedback, and gas cooling. The models follow the evolution of an initially homogeneous gas cloud collapsing in a pre-existing dark-matter halo. These simplified initial conditions are supported by the merger trees of isolated dwarf galaxies extracted from the milli-Millennium Simulation. The star-formation histories of the model galaxies exhibit burst-like behaviour. These bursts are a consequence of the blow-out and subsequent in-fall of gas. The amount of gas that leaves the galaxy for good is found to be small, in absolute numbers, ranging between 3x10^7 Msol and 6x10^7 Msol . For the least massive models, however, this is over 80 per cent of their initial gas mass. The local fluctuations in gas density are strong enough to trigger star-bursts in the massive models, or to inhibit anything more than small residual star formation for the less massive models. Between these star-bursts there can be time intervals of several Gyrs. We have compared model predictions with available data for the relations between luminosity and surface brightness profile, half-light radius, central velocity dispersion, broad band colour (B-V) and metallicity, as well as the location relative to the fundamental plane. The properties of the model dwarf galaxies agree quite well with those of observed dwarf galaxies.
The cluster lens Cl 0024+1654 is undoubtedly one of the most beautiful examples of strong gravitational lensing, providing five large images of a single source with well-resolved substructure. Using the information contained in the positions and the shapes of the images, combined with the null space information, a non-parametric technique is used to infer the strong lensing mass map of the central region of this cluster. This yields a strong lensing mass of 1.60x10^14 M_O within a 0.5 radius around the cluster center. This mass distribution is then used as a case study of the monopole degeneracy, which may be one of the most important degeneracies in gravitational lensing studies and which is extremely hard to break. We illustrate the monopole degeneracy by adding circularly symmetric density distributions with zero total mass to the original mass map of Cl 0024+1654. These redistribute mass in certain areas of the mass map without affecting the observed images in any way. We show that the monopole degeneracy and the mass-sheet degeneracy together lie at the heart of the discrepancies between different gravitational lens reconstructions that can be found in the literature for a given object, and that many images/sources, with an overall high image density in the lens plane, are required to construct an accurate, high-resolution mass map based on strong-lensing data.
The inversion of a gravitational lens system is, as is well known, plagued by the so-called mass-sheet degeneracy: one can always rescale the density distribution of the lens and add a constant-density mass-sheet such that the, also properly rescaled , source plane is projected onto the same observed images. For strong lensing systems, it is often claimed that this degeneracy is broken as soon as two or more sources at different redshifts are available. This is definitely true in the strict sense that it is then impossible to add a constant-density mass-sheet to the rescaled density of the lens without affecting the resulting images. However, often one can easily construct a more general mass distribution -- instead of a constant-density sheet of mass -- which gives rise to the same effect: a uniform scaling of the sources involved without affecting the observed images. We show that this can be achieved by adding one or more circularly symmetric mass distributions, each with its own center of symmetry, to the rescaled mass distribution of the original lens. As it uses circularly symmetric distributions, this procedure can lead to the introduction of ring shaped features in the mass distribution of the lens. In this paper, we show explicitly how degenerate
Galaxies acting as gravitational lenses are surrounded by, at most, a handful of images. This apparent paucity of information forces one to make the best possible use of what information is available to invert the lens system. In this paper, we explo re the use of a genetic algorithm to invert in a non-parametric way strong lensing systems containing only a small number of images. Perhaps the most important conclusion of this paper is that it is possible to infer the mass distribution of such gravitational lens systems using a non-parametric technique. We show that including information about the null space (i.e. the region where no images are found) is prerequisite to avoid the prediction of a large number of spurious images, and to reliably reconstruct the lens mass density. While the total mass of the lens is usually constrained within a few percent, the fidelity of the reconstruction of the lens mass distribution depends on the number and position of the images. The technique employed to include null space information can be extended in a straightforward way to add additional constraints, such as weak lensing data or time delay information.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا