ترغب بنشر مسار تعليمي؟ اضغط هنا

Production of exclusive dijets in diffractive deep inelastic $e^pm p$ scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 372 pb$^{-1}$. The measurement was performed for $gamma^*-p$ centre-of-mass energies i n the range $90 < W < 250$ GeV and for photon virtualities $Q^2 > 25$ GeV$^2$. Energy and transverse-energy flows around the jet axis are presented. The cross section is presented as a function of $beta$ and $phi$, where $beta=x/x_{rm I!P}$, $x$ is the Bjorken variable and $x_{rm I!P}$ is the proton fractional longitudinal momentum loss. The angle $phi$ is defined by the $gamma^*-$dijet plane and the $gamma^*-e^pm$ plane in the rest frame of the diffractive final state. The $phi$ cross section is measured in bins of $beta$. The results are compared to predictions from models based on different assumptions about the nature of the diffractive exchange.
Two special calorimeters are foreseen for the instrumentation of the very forward region of an ILC or CLIC detector; a luminometer (LumiCal) designed to measure the rate of low angle Bhabha scattering events with a precision better than 10$^{-3}$ at the ILC and 10$^{-2}$ at CLIC, and a low polar-angle calorimeter (BeamCal). The latter will be hit by a large amount of beamstrahlung remnants. The intensity and the spatial shape of these depositions will provide a fast luminosity estimate, as well as determination of beam parameters. The sensors of this calorimeter must be radiation-hard. Both devices will improve the e.m. hermeticity of the detector in the search for new particles. Finely segmented and very compact electromagnetic calorimeters will match these requirements. Due to the high occupancy, fast front-end electronics will be needed. Monte Carlo studies were performed to investigate the impact of beam-beam interactions and physics background processes on the luminosity measurement, and of beamstrahlung on the performance of BeamCal, as well as to optimise the design of both calorimeters. Dedicated sensors, front-end and ADC ASICs have been designed for the ILC and prototypes are available. Prototypes of sensor planes fully assembled with readout electronics have been studied in electron beams.
Detector-plane prototypes of the very forward calorimetry of a future detector at an e+e- collider have been built and their performance was measured in an electron beam. The detector plane comprises silicon or GaAs pad sensors, dedicated front-end a nd ADC ASICs, and an FPGA for data concentration. Measurements of the signal-to-noise ratio and the response as a function of the position of the sensor are presented. A deconvolution method is successfully applied, and a comparison of the measured shower shape as a function of the absorber depth with a Monte-Carlo simulation is given.
In this extended analysis using the ZEUS detector at HERA, the photoproduction of isolated photons together with a jet is measured for different ranges of the fractional photon energy, $x_gamma^{mathrm{meas}}$, contributing to the photon-jet final st ate. Cross sections are evaluated in the photon transverse-energy and pseudorapidity ranges $6 < E_T^{gamma} < 15$ GeV and $-0.7 < eta^{gamma} < 0.9$, and for jet transverse-energy and pseudorapidity ranges $4 < E_T^{rm jet} < 35$ GeV and $-1.5 < eta^{rm jet} < 1.8$, for an integrated luminosity of 374 $mathrm{pb}^{-1}$. The kinematic observables studied comprise the transverse energy and pseudorapidity of the photon and the jet, the azimuthal difference between them, the fraction of proton energy taking part in the interaction, and the difference between the pseudorapidities of the photon and the jet. Higher-order theoretical calculations are compared to the results.
The production of beauty and charm quarks in ep interactions has been studied with the ZEUS detector at HERA for exchanged four-momentum squared 5 < Q^2 < 1000 GeV^2 using an integrated luminosity of 354 pb^{-1}. The beauty and charm content in event s with at least one jet have been extracted using the invariant mass of charged tracks associated with secondary vertices and the decay-length significance of these vertices. Differential cross sections as a function of Q^2, Bjorken x, jet transverse energy and pseudorapidity were measured and compared with next-to-leading-order QCD calculations. The beauty and charm contributions to the proton structure functions were extracted from the double-differential cross section as a function of x and Q^2. The running beauty-quark mass, m_b at the scale m_b, was determined from a QCD fit at next-to-leading order to HERA data for the first time and found to be 4.07 pm 0.14 (fit} ^{+0.01}_{-0.07} (mod.) ^{+0.05}_{-0.00} (param.) ^{+0.08}_{-0.05} (theo) GeV.
The photoproduction of $D^{*pm}$ mesons has been measured with the ZEUS detector at HERA at three different ep centre-of-mass energies, $sqrt{s}$, of 318, 251 and 225 GeV. For each data set, $D^*$ mesons were required to have transverse momentum, $p_ T^{D^*}$, and pseudorapidity, $eta^{D^*}$, in the ranges $1.9 < p_T^{D^*} < 20$ GeV and $|eta^{D^*}|<1.6$. The events were required to have a virtuality of the incoming photon, $Q^2$, of less than 1 GeV$^2$. The dependence on $sqrt{s}$ was studied by normalising to the high-statistics measurement at $sqrt{s} =318$ GeV. This led to the cancellation of a number of systematic effects both in data and theory. Predictions from next-to-leading-order QCD describe the $sqrt{s}$ dependence of the data well.
The reduced cross sections for $e^{+}p$ deep inelastic scattering have been measured with the ZEUS detector at HERA at three different centre-of-mass energies, $318$, $251$ and $225$ GeV. The cross sections, measured double differentially in Bjorken $x$ and the virtuality, $Q^2$, were obtained in the region $0.13 leq y leq 0.75$, where $y$ denotes the inelasticity and $5 leq Q^2 leq 110$ GeV$^2$. The proton structure functions $F_2$ and $F_L$ were extracted from the measured cross sections.
The neutral current e+/-p cross section has been measured up to values of Bjorken x of approximately 1 with the ZEUS detector at HERA using an integrated luminosity of 187 inv. pb of e-p and 142 inv. pb of e+p collisions at sqrt(s) = 318GeV. Differen tial cross sections in x and Q2, the exchanged boson virtuality, are presented for Q2 geq 725GeV2. An improved reconstruction method and greatly increased amount of data allows a finer binning in the high-x region of the neutral current cross section and leads to a measurement with much improved precision compared to a similar earlier analysis. The measurements are compared to Standard Model expectations based on a variety of recent parton distribution functions.
With short resumes and highlights the discussions in the different working groups of the workshop MPI@LHC 2012 is documented.
The production of Z0 bosons in the reaction ep -> eZ0p*, where p* stands for a proton or a low-mass nucleon resonance, has been studied in ep collisions at HERA using the ZEUS detector. The analysis is based on a data sample collected between 1996 an d 2007, amounting to 496 pb-1 of integrated luminosity. The Z0 was measured in the hadronic decay mode. The elasticity of the events was ensured by a cut on eta_max < 3.0, where eta_max is the maximum pseudorapidity of energy deposits in the calorimeter defined with respect to the proton beam direction. A signal was observed at the Z0 mass. The cross section of the reaction ep -> eZ0p* was measured to be sigma(ep -> eZ0p*) = 0.13 +/- 0.06 (stat.) +/- 0.01 (syst.) pb, in agreement with the Standard Model prediction of 0.16 pb. This is the first measurement of Z0 production in ep collisions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا