ترغب بنشر مسار تعليمي؟ اضغط هنا

52 - J. Chen , H. I. Nurdin 2021
Nonlinear stochastic modeling is useful for describing complex engineering systems. Meanwhile, neuromorphic (brain-inspired) computing paradigms are developing to tackle tasks that are challenging and resource intensive on digital computers. An emerg ing scheme is reservoir computing which exploits nonlinear dynamical systems for temporal information processing. This paper introduces reservoir computers with output feedback as stationary and ergodic infinite-order nonlinear autoregressive models. We highlight the versatility of this approach by employing classical and quantum reservoir computers to model synthetic and real data sets, further exploring their potential for control applications.
In this paper, we develop a system identification algorithm to identify a model for unknown linear quantum systems driven by time-varying coherent states, based on empirical single-shot continuous homodyne measurement data of the systems output. The proposed algorithm identifies a model that satisfies the physical realizability conditions for linear quantum systems, challenging constraints not encountered in classical (non-quantum) linear system identification. Numerical examples on a multiple-input multiple-output optical cavity model are presented to illustrate an application of the identification algorithm.
This paper establishes that generic linear quantum stochastic systems have a pure cascade realization of their transfer function, generalizing an earlier result established only for the special class of completely passive linear quantum stochastic sy stems. In particular, a cascade realization therefore exists for generic active linear quantum stochastic systems that require an external source of quanta to operate. The results facilitate a simplified realization of generic linear quantum stochastic systems for applications such as coherent feedback control and optical filtering. The key tools that are developed are algorithms for symplectic QR and Schur decompositions. It is shown that generic real square matrices of even dimension can be transformed into a lower $2 times 2$ block triangular form by a symplectic similarity transformation. The linear algebraic results herein may be of independent interest for applications beyond the problem of transfer function realization for quantum systems. Numerical examples are included to illustrate the main results. In particular, one example describes an equivalent realization of the transfer function of a nondegenerate parametric amplifier as the cascade interconnection of two degenerate parametric amplifiers with an additional outcoupling mirror.
This paper presents a model reduction method for the class of linear quantum stochastic systems often encountered in quantum optics and their related fields. The approach is proposed on the basis of an interpolatory projection ensuring that specific input-output responses of the original and the reduced-order systems are matched at multiple selected points (or frequencies). Importantly, the physical realizability property of the original quantum system imposed by the law of quantum mechanics is preserved under our tangential interpolatory projection. An error bound is established for the proposed model reduction method and an avenue to select interpolation points is proposed. A passivity preserving model reduction method is also presented. Examples of both active and passive systems are provided to illustrate the merits of our proposed approach.
The purpose of this paper is to develop a synthesis theory for linear dynamical quantum stochastic systems that are encountered in linear quantum optics and in phenomenological models of linear quantum circuits. In particular, such a theory will enab le the systematic realization of coherent/fully quantum linear stochastic controllers for quantum control, amongst other potential applications. We show how general linear dynamical quantum stochastic systems can be constructed by assembling an appropriate interconnection of one degree of freedom open quantum harmonic oscillators and, in the quantum optics setting, discuss how such a network of oscillators can be approximately synthesized or implemented in a systematic way from some linear and non-linear quantum optical elements. An example is also provided to illustrate the theory.
Based on a recently developed notion of physical realizability for quantum linear stochastic systems, we formulate a quantum LQG optimal control problem for quantum linear stochastic systems where the controller itself may also be a quantum system an d the plant output signal can be fully quantum. Such a control scheme is often referred to in the quantum control literature as coherent feedback control. It distinguishes the present work from previous works on the quantum LQG problem where measurement is performed on the plant and the measurement signals are used as input to a fully classical controller with no quantum degrees of freedom. The difference in our formulation is the presence of additional non-linear and linear constraints on the coefficients of the sought after controller, rendering the problem as a type of constrained controller design problem. Due to the presence of these constraints our problem is inherently computationally hard and this also distinguishes it in an important way from the standard LQG problem. We propose a numerical procedure for solving this problem based on an alternating projections algorithm and, as initial demonstration of the feasibility of this approach, we provide fully quantum controller design examples in which numerical solutions to the problem were successfully obtained. For comparison, we also consider the case of classical linear controllers that use direct or indirect measurements, and show that there exists a fully quantum linear controller which offers an improvement in performance over the classical ones.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا