ترغب بنشر مسار تعليمي؟ اضغط هنا

The cuprates contain a range of nanoscale phenomena that consist of both LDOS(E) features and spatial excitations. Many of these phenomena can only be observed through the use of a SI-STM and their disorder can be mapped out through the fitting of a phenomenological model to the LDOS(E). We present a study of the nanometer scale disorder of single crystal cryogenically cleaved samples of Bi2Sr2CaCu2O8+x whose dopings range from p = 0.19 to 0.06. The phenomenological model used is the Tripartite model that has been successfully applied to the average LDOS(E) previously. The resulting energy scale maps show a structured patchwork disorder of three energy scales, which can be described by a single underlying disordered parameter. This spatial disorder structure is universal for all dopings and energy scales. It is independent of the oxygen dopant negative energy resonances and the interface between the different patches takes the form of a shortened lifetime pseudogap/superconducting gap state. The relationship between the energy scales and the spatial modulations of the dispersive QPI, static q1* modulation and the pseudogap shows that the energy scales signatures in the LDOS(E) are tied to the onset and termination of the spatial excitations. The static q1* modulations local energy range is measured and its signature in the LDOS(E) is the kink, whose number of states are modulated with a wave vector of q1*. This analysis of both the LDOS(r,E) and the spatial modulations in q-space show a picture of a single underlying disordered parameter that determines both the LDOS(E) structure as well as the energy ranges of the QPI, q1* modulation and the pseudogap states. This parameter for a single patch can be defined by the Fermi surface crossing of the parent compound anti-ferromagnetic zone boundary for a model homogeneous superconductor with the same electronic properties as the patch.
We present a phenomenological model that describes the low energy electronic structure of the cuprate high temperature superconductor Bi2Sr2CaCu2O8+x as observed by Spectroscopic Imagining Scanning Tunneling Microscopy (SI-STM). Our model is based on observations from Quasiparticle Interference (QPI) measurements and Local Density of States (LDOS) measurements that span a range of hole densities from critical doping, p~0.19, to extremely underdoped, p~0.06. The model presented below unifies the spectral density of states observed in QPI studies with that of the LDOS. In unifying these two separate measurements, we find that the previously reported phenomena, the Bogoliubov QPI termination, the checkerboard conductance modulations, and the pseudogap are associated with unique energy scales that have features present in both the q-space and LDOS(E) data sets.
84 - T. Cuk , D.A. Zocco , H. Eisaki 2010
We have performed several high pressure electrical resistance experiments on Bi1.98Sr2.06Y0.68Cu2O8, an insulating parent compound of the high-Tc Bi2212 family of copper oxide superconductors. We find a resistive anomaly, a downturn at low temperatur e, that onsets with applied pressure in the 20-40 kbar range. Through both resistance and magnetoresistance measurements, we identify this anomaly as a signature of induced superconductivity. Resistance to higher pressures decreases Tc, giving a maximum of 10 K. The higher pressure measurements exhibit a strong sensitivity to the hydrostaticity of the pressure environment. We make comparisons to the pressure induced superconductivity now ubiquitous in the iron arsenides.
The spin ladder is a reduced-dimensional analogue of the high temperature superconductors that was predicted to exhibit both superconductivity and an electronic charge density wave or hole crystal (HC). Both phenomena have been observed in the doped spin ladder system Sr14-xCaxCu24O41 (SCCO), which at x=0 exhibits a HC which is commensurate at all temperatures. To investigate the effects of discommensuration we used resonant soft x-ray scattering (RSXS) to study SCCO as a function of doped hole density, d. The HC forms only with the commensurate wave vectors L_L = 1/5 and L_L = 1/3 and exhibits a simple temperature scaling T_(1/3) / T_(1/5) = 5/3. For irrational wave vectors the HC melts, perhaps through the motion of topological defects carrying fractional charge.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا