ترغب بنشر مسار تعليمي؟ اضغط هنا

We introduce a coupled-layer construction to describe three-dimensional topological crystalline insulators protected by reflection symmetry. Our approach uses stacks of weakly-coupled two-dimensional Chern insulators to produce topological crystallin e insulators in one higher dimension, with tunable number and location of surface Dirac cones. As an application of our formalism, we turn to a simplified model of topological crystalline insulator SnTe, showing that its protected surface states can be described using the coupled layer construction.
We study the distribution of transport current across superconducting Bi$_2$Sr$_2$CaCu$_2$O$_8$ crystals and the vortex flow through the sample edges. We show that the $T_x$ transition is of electrodynamic rather than thermodynamic nature, below whic h vortex dynamics is governed by the edge inductance instead of the resistance. This allows measurement of the resistance down to two orders of magnitude below the transport noise. By irradiating the current contacts the resistive step at vortex melting is shown to be due to loss of c-axis correlations rather than breakdown of quasi-long-range order within the a-b planes.
We study the oxygen doping dependence of the equilibrium first-order melting and second-order glass transitions of vortices in Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$. Doping affects both anisotropy and disorder. Anisotropy scaling is shown to collapse the melting lines only where thermal fluctuations are dominant. Yet, in the region where disorder breaks that scaling, the glass lines are still collapsed. A quantitative fit to melting and replica symmetry breaking lines of a 2D Ginzburg-Landau model further reveals that disorder amplitude weakens with doping, but to a lesser degree than thermal fluctuations, enhancing the relative role of disorder.
The thermodynamic $H-T$ phase diagram of Bi$_2$Sr$_2$CaCu$_2$O$_8$ was mapped by measuring local emph{equilibrium} magnetization $M(H,T)$ in presence of vortex `shaking. Two equally sharp first-order magnetization steps are revealed in a single tempe rature sweep, manifesting a liquid-solid-liquid sequence. In addition, a second-order glass transition line is revealed by a sharp break in the equilibrium $M(T)$ slope. The first- and second-order lines intersect at intermediate temperatures, suggesting the existence of four phases: Bragg glass and vortex crystal at low fields, glass and liquid at higher fields.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا