ترغب بنشر مسار تعليمي؟ اضغط هنا

The synthesis of heavy, proton rich isotopes is a poorly understood astrophysical process. Thermonuclear (type Ia) supernova explosions are among the suggested sites and the abundance of some isotopes present in the early solar system may be used to test the models. 92Nb is such an isotope and one of the reactions playing a role in its synthesis is 91Zr(p,gamma)92Nb. As no experimental cross sections were available for this reaction so far, nucleosynthesis models had to solely rely on theoretical calculations. In the present work the cross section of 91Zr(p,gamma)92mNb has been measured at astrophysical energies by activation. The results excellently confirm the predictions of cross sections and reaction rates for 91Zr(p,gamma)92Nb, as used in astrophysical simulations.
83 - P. Mohr , Zs. Fulop , Gy. Gyurky 2020
The prediction of stellar ($gamma$,$alpha$) reaction rates for heavy nuclei is based on the calculation of ($alpha$,$gamma$) cross sections at sub-Coulomb energies. These rates are essential for modeling the nucleosynthesis of so-called $p$-nuclei. T he standard calculations in the statistical model show a dramatic sensitivity to the chosen $alpha$-nucleus potential. The present study explains the reason for this dramatic sensitivity which results from the tail of the imaginary $alpha$-nucleus potential in the underlying optical model calculation of the total reaction cross section. As an alternative to the optical model, a simple barrier transmission model is suggested. It is shown that this simple model in combination with a well-chosen $alpha$-nucleus potential is able to predict total $alpha$-induced reaction cross sections for a wide range of heavy target nuclei above $A gtrsim 150$ with uncertainties below a factor of two. The new predictions from the simple model do not require any adjustment of parameters to experimental reaction cross sections whereas in previous statistical model calculations all predictions remained very uncertain because the parameters of the $alpha$-nucleus potential had to be adjusted to experimental data. The new model allows to predict the reaction rate of the astrophysically important $^{176}$W($alpha$,$gamma$)$^{180}$Os reaction with reduced uncertainties, leading to a significantly lower reaction rate at low temperatures. The new approach could also be validated for a broad range of target nuclei from $A approx 60$ up to $A gtrsim 200$.
426 - Gy. Gyurky 2019
In experimental nuclear astrophysics it is common knowledge that reaction cross sections must be measured in the astrophysically relevant, low energy ranges or at least as close to them as possible. In most of the cases, however, it is impossible to reach such low energies. The reactions must therefore be studied at higher energies and the cross sections must be extrapolated to lower ones. In this paper the importance of cross section measurements in wide energy ranges are emphasized and a few examples are shown from the areas of hydrogen burning processes and heavy element nucleosynthesis.
336 - T. Szucs , P. Mohr , Gy. Gyurky 2019
Statistical model calculations have to be used for the determination of reaction rates in large-scale reaction networks for heavy-element nucleosynthesis. A basic ingredient of such a calculation is the a-nucleus optical model potential. Several diff erent parameter sets are available in literature, but their predictions of a-induced reaction rates vary widely, sometimes even exceeding one order of magnitude. This paper presents the result of a-induced reaction cross-section measurements on gold which could be carried out for the first time very close to the astrophysically relevant energy region. The new experimental data are used to test statistical model predictions and to constrain the a-nucleus optical model potential. For the measurements the activation technique was used. The cross section of the (a,n) and (a,2n) reactions was determined from g-ray counting, while that of the radiative capture was determined via X-ray counting. The cross section of the reactions was measured below E$_a=20.0$~MeV. In the case of the $^{197}$Au(a,2n)$^{199}$Tl reaction down to 17.5~MeV with 0.5-MeV steps, reaching closer to the reaction threshold than ever before. The cross section of $^{197}$Au(a,n)$^{200}$Tl and $^{197}$Au(a,g)$^{201}$Tl was measured down to E$_a=13.6$ and 14.0~MeV, respectively, with 0.5-MeV steps above the (a,2n) reaction threshold and with 1.0-MeV steps below that. The new dataset is in agreement with the available values from the literature, but is more precise and extends towards lower energies. Two orders of magnitude lower cross sections were successfully measured than in previous experiments which used g-ray counting only, thus providing experimental data at lower energies than ever before. The new precision dataset allows us to find the best-fit a-nucleus optical model potential and to predict cross sections in the Gamow window with smaller uncertainties.
130 - Gy. Gyurky , Z. Halasz , G.G. Kiss 2019
The 14N(p,gamma)15O reaction plays a vital role in various astrophysical scenarios. Its reaction rate must be accurately known in the present era of high precision astrophysics. The cross section of the reaction is often measured relative to a low en ergy resonance, the strength of which must therefore be determined precisely. The activation method, based on the measurement of 15O decay, has not been used in modern measurements of the 14N(p,gamma)15O reaction. The aim of the present work is to provide strength data for two resonances in the 14N(p,gamma)15O reaction using the activation method. The obtained values are largely independent from previous data measured by in-beam gamma-spectroscopy and are free from some of their systematic uncertainties. Solid state TiN targets were irradiated with a proton beam provided by the Tandetron accelerator of Atomki using a cyclic activation. The decay of the produced 15O isotopes was measured by detecting the 511 keV positron annihilation gamma-rays. The strength of the Ep = 278 keV resonance was measured to be 13.4 +- 0.8 meV while for the Ep = 1058 keV resonance the strength is 442 +- 27 meV. The obtained Ep = 278 keV resonance strength is in fair agreement with the values recommended by two recent works. On the other hand, the Ep = 1058 keV resonance strength is about 20% higher than the previous value. The discrepancy may be caused in part by a previously neglected finite target thickness correction. As only the low energy resonance is used as a normalization point for cross section measurements, the calculated astrophysical reaction rate of the 14N(p,gamma)15O reaction and therefore the astrophysical consequences are not changed by the present results.
162 - T. Szucs , G. G. Kiss , Gy. Gyurky 2019
The $^3$He($alpha$,$gamma$)$^7$Be reaction is a widely studied nuclear reaction; however, it is still not understood with the required precision. It has a great importance both in Big Bang nucleosynthesis and in solar hydrogen burning. The low mass n umber of the reaction partners makes it also suitable for testing microscopic calculations. Despite the high number of experimental studies, none of them addresses the $^3$He($alpha$,$gamma$)$^7$Be reaction cross sections above 3.1-MeV center-of-mass energy. Recently, a previously unobserved resonance in the $^6$Li(p,$gamma$)$^7$Be reaction suggested a new level in $^7$Be, which would also have an impact on the $^3$He($alpha$,$gamma$)$^7$Be reaction in the energy range above 4.0 MeV. The aim of the present experiment is to measure the $^3$He($alpha$,$gamma$)$^7$Be reaction cross section in the energy range of the proposed level. For this investigation the activation technique was used. A thin window gas-cell target confining $^3$He gas was irradiated using an $alpha$ beam. The $^7$Be produced was implanted into the exit foil. The $^7$Be activity was determined by counting the $gamma$ rays following its decay by a well-shielded high-purity germanium detector. Reaction cross sections have been determined between $E_{cm} = 4.0 - 4.4$ MeV with 0.04-MeV steps covering the energy range of the proposed nuclear level. One lower-energy cross-section point was also determined to be able to compare the results with previous studies. A constant cross section of around 10.5 $mu$barn was observed around the $^7$Be proton separation energy. An upper limit of 45 neV for the strength of a $^3$He($alpha$,$gamma$)$^7$Be resonance is derived.
381 - Gy. Gyurky , Z. Halasz , G.G. Kiss 2019
The literature half-life value of 65Ga is based on only one experiment carried out more than 60 years ago and it has a relatively large uncertainty. In the present work this half-life is determined based on the counting of the gamma-rays following th e beta-decay of 65Ga. Our new recommended half-life is 15.133 +- 0.028 min which is in agreement with the literature value but almost one order of magnitude more precise.
The primary aim of experimental nuclear astrophysics is to determine the rates of nuclear reactions taking place in stars in various astrophysical conditions. These reaction rates are important ingredient for understanding the elemental abundance dis tribution in our solar system and the galaxy. The reaction rates are determined from the cross sections which need to be measured at energies as close to the astrophysically relevant ones as possible. In many cases the final nucleus of an astrophysically important reaction is radioactive which allows the cross section to be determined based on the off-line measurement of the number of produced isotopes. In general, this technique is referred to as the activation method, which often has substantial advantages over in-beam particle- or gamma-detection measurements. In this paper the activation method is reviewed from the viewpoint of nuclear astrophysics. Important aspects of the activation method are given through several reaction studies for charged particle, neutron and gamma-induced reactions. Various techniques for the measurement of the produced activity are detailed. As a special case of activation, the technique of Accelerator Mass Spectrometry in cross section measurements is also reviewed.
121 - Gy. Gyurky , Zs. Fulop , Z. Halasz 2018
In a recent work, the cross section measurement of the 64Zn(p,alpha)61Cu reaction was used to prove that the standard alpha-nucleus optical potentials used in astrophysical network calculation fail to reproduce the experimental data at energies relev ant for heavy element nucleosynthesis. In the present paper the analysis of the obtained experimental data is continued by comparing the results with the predictions using different parameters. It is shown that the recently suggested modification of the standard optical potential leads to a better description of the data.
375 - T. Szucs , G. G. Kiss , Gy. Gyurky 2017
The stellar reaction rates of radiative $alpha$-capture reactions on heavy isotopes are of crucial importance for the $gamma$ process network calculations. These rates are usually derived from statistical model calculations, which need to be validate d, but the experimental database is very scarce. This paper presents the results of $alpha$-induced reaction cross section measurements on iridium isotopes carried out at first close to the astrophysically relevant energy region. Thick target yields of $^{191}$Ir($alpha$,$gamma$)$^{195}$Au, $^{191}$Ir($alpha$,n)$^{194}$Au, $^{193}$Ir($alpha$,n)$^{196m}$Au, $^{193}$Ir($alpha$,n)$^{196}$Au reactions have been measured with the activation technique between E$_alpha = 13.4$ MeV and 17 MeV. For the first time the thick target yield was determined with X-ray counting. This led to a previously unprecedented sensitivity. From the measured thick target yields, reaction cross sections are derived and compared with statistical model calculations. The recently suggested energy-dependent modification of the $alpha$+nucleus optical potential gives a good description of the experimental data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا