ترغب بنشر مسار تعليمي؟ اضغط هنا

74 - Martin Lemoine 2011
Recent analytical and numerical work argue that successful relativistic Fermi acceleration requires a weak magnetization of the unshocked plasma, all the more so at high Lorentz factors. The present paper tests this conclusion by computing the afterg low of a gamma-ray burst outflow propagating in a magnetized stellar wind using ab initio principles regarding the microphysics of relativistic Fermi acceleration. It is shown that in magnetized environments, one expects a drop-out in the X-ray band on sub-day scales as the synchrotron emission of the shock heated electrons exits the frequency band. At later times, Fermi acceleration becomes operative when the blast Lorentz factor drops below a certain critical value, leading to the recovery of the standard afterglow light curve. Interestingly, the observed drop-out bears resemblance with the fast decay found in gamma-ray bursts early X-ray afterglows.
110 - Martin Lemoine 2011
Fermi acceleration can develop efficiently at relativistic collisionless shock waves provided the upstream (unshocked) plasma is weakly magnetized. At low magnetization, the large size of the shock precursor indeed provides enough time for electromag netic micro-instabilities to grow and such micro-instabilities generate small scale turbulence that in turn provides the scattering required. The present paper extends our previous analysis on the development of these micro-instabilities to account for the finite angular dispersion of the beam of reflected and accelerated particles and to account for the expected heating of the upstream electrons in the shock precursor. We show that the oblique two stream instability may operate down to values of the shock Lorentz factor gamma_{sh}~10 as long as the electrons of the upstream plasma remain cold, while the filamentation instability is strongly inhibited in this limit; however, as electrons get heated to relativistic temperatures, the situation becomes opposite and the two stream instability becomes inhibited while the filamentation mode becomes efficient, even at moderate values of the shock Lorentz factor. The peak wavelength of these instabilities migrates from the inertial electron scale towards the proton inertial scale as the background electrons get progressively heated during the crossing of the shock precursor. We also discuss the role of current driven instabilities upstream of the shock. In particular, we show that the returning/accelerated particles give rise to a transverse current through their rotation in the background magnetic field. We find that the compensating current in the background plasma can lead to a Buneman instability which provides an efficient source of electron heating. [Abridged]
Magnetic reconnection plays a critical role in many astrophysical processes where high energy emission is observed, e.g. particle acceleration, relativistic accretion powered outflows, pulsar winds and probably in dissipation of Poynting flux in GRBs . The magnetic field acts as a reservoir of energy and can dissipate its energy to thermal and kinetic energy via the tearing mode instability. We have performed 3d nonlinear MHD simulations of the tearing mode instability in a current sheet. Results from a temporal stability analysis in both the linear regime and weakly nonlinear (Rutherford) regime are compared to the numerical simulations. We observe magnetic island formation, island merging and oscillation once the instability has saturated. The growth in the linear regime is exponential in agreement with linear theory. In the second, Rutherford regime the island width grows linearly with time. We find that thermal energy produced in the current sheet strongly dominates the kinetic energy. Finally preliminary analysis indicates a P(k) 4.8 power law for the power spectral density which suggests that the tearing mode vortices play a role in setting up an energy cascade.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا