ترغب بنشر مسار تعليمي؟ اضغط هنا

Directed assembly of block polymers is rapidly becoming a viable strategy for lithographic patterning of nanoscopic features. One of the key attributes of directed assembly is that an underlying chemical or topographic substrate pattern used to direc t assembly need not exhibit a direct correspondence with the sought after block polymer morphology, and past work has largely relied on trial-and-error approaches to design appropriate patterns. In this work, a computational evolutionary strategy is proposed to solve this optimization problem. By combining the Cahn-Hilliard equation, which is used to find the equilibrium morphology, and the covariance-matrix evolutionary strategy, which is used to optimize the combined outcome of particular substrate-copolymer combinations, we arrive at an efficient method for design of substrates leading to non-trivial, desirable outcomes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا