ترغب بنشر مسار تعليمي؟ اضغط هنا

Emitters strongly coupled to a photonic crystal provide a powerful platform for realizing novel quantum light-matter interactions. Here we study the optical properties of a three-level artificial atomic chain coupled to a one-dimensional superconduct ing microwave photonic crystal. A sharp minimum-energy dip appears in the transmission spectrum of a weak input field, which reveals rich behavior of the long-range interactions arising from localized bound states. We find that the dip frequency scales linearly with both the number of the artificial atoms and the characteristic strength of the long-range interactions when the localization length of the bound state is sufficiently large. Motivated by this observation, we present a simple model to calculate the dip frequency with system parameters, which agrees well with the results from exact numerics for large localization lengths. We observe oscillation between bunching and antibunching in photon-photon correlation function of the output field. Furthermore, we find that the model remains valid even though the coupling strengths between the photonic crystal and artificial atoms are not exactly equal and the phases of external driving fields for the artificial atoms are different. Thus, we may infer valuable system parameters from the dip location in the transmission spectrum, which provides an important measuring tool for the superconducting microwave photonic crystal systems in experiment. With remarkable advances to couple artificial atoms with microwave photonic crystals, our proposal may be experimentally realized in currently available superconducting circuits.
We theoretically investigate the quantum scattering of a single-photon pulse interacting with an ensemble of $Lambda$-type three-level atoms coupled to a one-dimensional waveguide. With an effective non-Hermitian Hamiltonian, we study the collective interaction between the atoms mediated by the waveguide mode. In our scheme, the atoms are randomly placed in the lattice along the axis of the one-dimensional waveguide, which closely corresponds to the practical condition that the atomic positions can not be controlled precisely in experiment. Many interesting optical properties occur in our waveguide-atom system, such as electromagnetically induced transparency (EIT) and optical depth. Moreover, we observe that strong photon-photon correlation with quantum beats can be generated in the off-resonant case, which provides an effective candidate for producing non-classical light in experiment. With remarkable progress in waveguide-emitter system, our scheme may be feasible in the near future.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا