ترغب بنشر مسار تعليمي؟ اضغط هنا

The RENO experiment recently reported the disappearance of reactor electron antineutrinos consistent with neutrino oscillations, with a significance of 4.9 standard deviations. The published ratio of observed to expected number of antineutrinos in th e far detector is R=0.920 +-0.009(stat.) +-0.014(syst.) and corresponds to sin^2 2theta13 = 0.113 +-0.013(stat.) +-0.019(syst), using a rate-only analysis. In this letter we reanalyze the data and we find a ratio R=0.903 +-0.01(stat.), leading to sin^2 2theta13 = 0.135. Moreover we show that the sin^2 2theta13 measurement still depend of the prompt high energy bound beyond 4 MeV, contrarily to the expectation based on neutrino oscillation.
We present in this article a detailed quantitative discussion of the measurement of the leptonic mixing angle theta_13 through currently scheduled reactor neutrino oscillation experiments. We thus focus on Double Chooz (Phase I & II), Daya Bay (Phase I & II) and RENO experiments. We perform a unified analysis, including systematics, backgrounds and accurate experimental setup in each case. Each identified systematic error and background impact has been assessed on experimental setups following published data when available and extrapolating from Double Chooz acquired knowledge otherwise. After reviewing the experiments, we present a new analysis of their sensitivities to sin^2(2 theta_13) and study the impact of the different systematics based on the pulls approach. Through this generic statistical analysis we discuss the advantages and drawbacks of each experimental setup.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا