ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on the imaging analysis of 200 ks sub-arcsecond resolution Chandra ACIS-S observations of the nearby Seyfert 1 galaxy NGC 4151. Bright, structured soft X-ray emission is observed to extend from 30 pc to 1.3 kpc in the south-west from the nu cleus, much farther than seen in earlier X-ray studies. The terminus of the north-eastern X-ray emission is spatially coincident with a CO gas lane, where the outflow likely encounters dense gas in the host galactic disk. X-ray emission is also detected outside the boundaries of the ionization cone, which indicates that the gas there is not completely shielded from the nuclear continuum, as would be the case for a molecular torus collimating the bicone. In the central r<200 pc region, the subpixel processing of the ACIS data recovers the morphological details on scales of <30~pc (<0.5) first discovered in Chandra HRC images. The X-ray emission is more absorbed towards the boundaries of the ionization cone, as well as perpendicular to the bicone along the direction of a putative torus in NGC 4151. The innermost region where X-ray emission shows the highest hardness ratio, is spatially coincident with the near-infrared resolved H_2 emission and dusty spirals we find in an HST V-H color image. The agreement between the observed H_2 line flux and the value predicted from X-ray-irradiated molecular cloud models supports photo-excitation by X-rays from the active nucleus as the origin of the H_2 line, although contribution from UV fluorescence or collisional excitation cannot be fully ruled out with current data. The discrepancy between the mass of cold molecular gas inferred from recent CO and near-infrared H_2 observations may be explained by the anomalous CO abundance in this X-ray dominated region. The total H_2 mass derived from the X-ray observation agrees with measurement in Storchi-Bergmann et al.
We present the Chandra discovery of soft diffuse X-ray emission in NGC 4151 (L[0.5-2keV]~10^{39} erg s$^{-1}$), extending ~2 kpc from the active nucleus and filling in the cavity of the HI material. The best fit to the X-ray spectrum requires either a kT~0.25 keV thermal plasma or a photoionized component. In the thermal scenario, hot gas heated by the nuclear outflow would be confined by the thermal pressure of the HI gas and the dynamic pressure of inflowing neutral material in the galactic disk. In the case of photoionization, the nucleus must have experienced an Eddington limit outburst. For both scenarios, the AGN-host interaction in NGC 4151 must have occured relatively recently (some 10^4 yr ago). This very short timescale to the last episode of high activity phase may imply such outbursts occupy $gtrsim$1% of AGN lifetime.
48 - Roberto Soria 2009
Based on our long (~ 300 ks) 2007 XMM-Newton observation of the Seyfert galaxy NGC 1365, we report here on the spectral and timing behaviour of two ultraluminous X-ray sources, which had previously reached isotropic X-ray luminosities L_X ~ 4 x 10^{4 0} erg/s (0.3-10 keV band). In 2007, they were in a lower state (L_X ~ 5 x 10^{39} erg/s, and L_X ~ 1.5 x 10^{39} erg/s for X1 and X2, respectively). Their X-ray spectra were dominated by power-laws with photon indices Gamma ~ 1.8 and Gamma ~ 1.2, respectively. Thus, their spectra were similar to those at their outburst peaks. Both sources have been seen to vary by a factor of 20 in luminosity over the years, but their spectra are always dominated by a hard power-law; unlike most stellar-mass BHs, they have never been found in a canonical high/soft state dominated by a standard disk. The lack of a canonical high/soft state seems to be a common feature of ULXs. We speculate that the different kind of donor star and/or a persistently super-Eddington accretion rate during their outbursts may prevent accretion flows in ULXs from settling into steady standard disks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا