ترغب بنشر مسار تعليمي؟ اضغط هنا

Model-Based Reinforcement Learning (MBRL) is one category of Reinforcement Learning (RL) algorithms which can improve sampling efficiency by modeling and approximating system dynamics. It has been widely adopted in the research of robotics, autonomou s driving, etc. Despite its popularity, there still lacks some sophisticated and reusable open-source frameworks to facilitate MBRL research and experiments. To fill this gap, we develop a flexible and modularized framework, Baconian, which allows researchers to easily implement a MBRL testbed by customizing or building upon our provided modules and algorithms. Our framework can free users from re-implementing popular MBRL algorithms from scratch thus greatly save users efforts on MBRL experiments.
Cloud computing delivers value to users by facilitating their access to computing capacity in periods when their need arises. An approach is to provide both on-demand and spot services on shared servers. The former allows users to access servers on d emand at a fixed price and users occupy different periods of servers. The latter allows users to bid for the remaining unoccupied periods via dynamic pricing; however, without appropriate design, such periods may be arbitrarily small since on-demand users arrive randomly. This is also the current service model adopted by Amazon Elastic Cloud Compute. In this paper, we provide the first integral framework for sharing the time of servers between on-demand and spot services while optimally pricing spot instances. It guarantees that on-demand users can get served quickly while spot users can stably utilize servers for a properly long period once accepted, which is a key feature to make both on-demand and spot services accessible. Simulation results show that, by complementing the on-demand market with a spot market, a cloud provider can improve revenue by up to 464.7%. The framework is designed under assumptions which are met in real environments. It is a new tool that cloud operators can use to quantify the advantage of a hybrid spot and on-demand service, eventually making the case for operating such service model in their own infrastructures.
Adaptive bitrate (ABR) streaming is the de facto solution for achieving smooth viewing experiences under unstable network conditions. However, most of the existing rate adaptation approaches for ABR are content-agnostic, without considering the seman tic information of the video content. Nevertheless, semantic information largely determines the informativeness and interestingness of the video content, and consequently affects the QoE for video streaming. One common case is that the user may expect higher quality for the parts of video content that are more interesting or informative so as to reduce video distortion and information loss, given that the overall bitrate budgets are limited. This creates two main challenges for such a problem: First, how to determine which parts of the video content are more interesting? Second, how to allocate bitrate budgets for different parts of the video content with different significances? To address these challenges, we propose a Content-of-Interest (CoI) based rate adaptation scheme for ABR. We first design a deep learning approach for recognizing the interestingness of the video content, and then design a Deep Q-Network (DQN) approach for rate adaptation by incorporating video interestingness information. The experimental results show that our method can recognize video interestingness precisely, and the bitrate allocation for ABR can be aligned with the interestingness of video content while not compromising the performances on objective QoE metrics.
Motivated by the prowess of deep learning (DL) based techniques in prediction, generalization, and representation learning, we develop a novel framework called DeepQoE to predict video quality of experience (QoE). The end-to-end framework first uses a combination of DL techniques (e.g., word embeddings) to extract generalized features. Next, these features are combined and fed into a neural network for representation learning. Such representations serve as inputs for classification or regression tasks. Evaluating the performance of DeepQoE with two datasets, we show that for the small dataset, the accuracy of all shallow learning algorithm is improved by using the representation derived from DeepQoE. For the large dataset, our DeepQoE framework achieves significant performance improvement in comparison to the best baseline method (90.94% vs. 82.84%). Moreover, DeepQoE, also released as an open source tool, provides video QoE research much-needed flexibility in fitting different datasets, extracting generalized features, and learning representations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا