ترغب بنشر مسار تعليمي؟ اضغط هنا

With the development of smart cities, urban surveillance video analysis will play a further significant role in intelligent transportation systems. Identifying the same target vehicle in large datasets from non-overlapping cameras should be highlight ed, which has grown into a hot topic in promoting intelligent transportation systems. However, vehicle re-identification (re-ID) technology is a challenging task since vehicles of the same design or manufacturer show similar appearance. To fill these gaps, we tackle this challenge by proposing Triplet Center Loss based Part-aware Model (TCPM) that leverages the discriminative features in part details of vehicles to refine the accuracy of vehicle re-identification. TCPM base on part discovery is that partitions the vehicle from horizontal and vertical directions to strengthen the details of the vehicle and reinforce the internal consistency of the parts. In addition, to eliminate intra-class differences in local regions of the vehicle, we propose external memory modules to emphasize the consistency of each part to learn the discriminating features, which forms a global dictionary over all categories in dataset. In TCPM, triplet-center loss is introduced to ensure each part of vehicle features extracted has intra-class consistency and inter-class separability. Experimental results show that our proposed TCPM has an enormous preference over the existing state-of-the-art methods on benchmark datasets VehicleID and VeRi-776.
Vehicle re-identification (reID) often requires recognize a target vehicle in large datasets captured from multi-cameras. It plays an important role in the automatic analysis of the increasing urban surveillance videos, which has become a hot topic i n recent years. However, the appearance of vehicle images is easily affected by the environment that various illuminations, different backgrounds and viewpoints, which leads to the large bias between different cameras. To address this problem, this paper proposes a cross-camera adaptation framework (CCA), which smooths the bias by exploiting the common space between cameras for all samples. CCA first transfers images from multi-cameras into one camera to reduce the impact of the illumination and resolution, which generates the samples with the similar distribution. Then, to eliminate the influence of background and focus on the valuable parts, we propose an attention alignment network (AANet) to learn powerful features for vehicle reID. Specially, in AANet, the spatial transfer network with attention module is introduced to locate a series of the most discriminative regions with high-attention weights and suppress the background. Moreover, comprehensive experimental results have demonstrated that our proposed CCA can achieve excellent performances on benchmark datasets VehicleID and VeRi-776.
Hashing techniques, also known as binary code learning, have recently gained increasing attention in large-scale data analysis and storage. Generally, most existing hash clustering methods are single-view ones, which lack complete structure or comple mentary information from multiple views. For cluster tasks, abundant prior researches mainly focus on learning discrete hash code while few works take original data structure into consideration. To address these problems, we propose a novel binary code algorithm for clustering, which adopts graph embedding to preserve the original data structure, called (Graph-based Multi-view Binary Learning) GMBL in this paper. GMBL mainly focuses on encoding the information of multiple views into a compact binary code, which explores complementary information from multiple views. In particular, in order to maintain the graph-based structure of the original data, we adopt a Laplacian matrix to preserve the local linear relationship of the data and map it to the Hamming space. Considering different views have distinctive contributions to the final clustering results, GMBL adopts a strategy of automatically assign weights for each view to better guide the clustering. Finally, An alternating iterative optimization method is adopted to optimize discrete binary codes directly instead of relaxing the binary constraint in two steps. Experiments on five public datasets demonstrate the superiority of our proposed method compared with previous approaches in terms of clustering performance.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا