ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper proposes a new statistic to test independence between two high dimensional random vectors ${mathbf{X}}:p_1times1$ and ${mathbf{Y}}:p_2times1$. The proposed statistic is based on the sum of regularized sample canonical correlation coefficie nts of ${mathbf{X}}$ and ${mathbf{Y}}$. The asymptotic distribution of the statistic under the null hypothesis is established as a corollary of general central limit theorems (CLT) for the linear statistics of classical and regularized sample canonical correlation coefficients when $p_1$ and $p_2$ are both comparable to the sample size $n$. As applications of the developed independence test, various types of dependent structures, such as factor models, ARCH models and a general uncorrelated but dependent case, etc., are investigated by simulations. As an empirical application, cross-sectional dependence of daily stock returns of companies between different sections in the New York Stock Exchange (NYSE) is detected by the proposed test.
Statistical inferences for sample correlation matrices are important in high dimensional data analysis. Motivated by this, this paper establishes a new central limit theorem (CLT) for a linear spectral statistic (LSS) of high dimensional sample corre lation matrices for the case where the dimension p and the sample size $n$ are comparable. This result is of independent interest in large dimensional random matrix theory. Meanwhile, we apply the linear spectral statistic to an independence test for $p$ random variables, and then an equivalence test for p factor loadings and $n$ factors in a factor model. The finite sample performance of the proposed test shows its applicability and effectiveness in practice. An empirical application to test the independence of household incomes from different cities in China is also conducted.
Consider a normal vector $mathbf{z}=(mathbf{x},mathbf{y})$, consisting of two sub-vectors $mathbf{x}$ and $mathbf{y}$ with dimensions $p$ and $q$ respectively. With $n$ independent observations of $mathbf{z}$ at hand, we study the correlation between $mathbf{x}$ and $mathbf{y}$, from the perspective of the Canonical Correlation Analysis, under the high-dimensional setting: both $p$ and $q$ are proportional to the sample size $n$. In this paper, we focus on the case that $Sigma_{mathbf{x}mathbf{y}}$ is of finite rank $k$, i.e. there are $k$ nonzero canonical correlation coefficients, whose squares are denoted by $r_1geqcdotsgeq r_k>0$. Under the additional assumptions $(p+q)/nto yin (0,1)$ and $p/q otto 1$, we study the sample counterparts of $r_i,i=1,ldots,k$, i.e. the largest k eigenvalues of the sample canonical correlation matrix $S_{mathbf{x}mathbf{x}}^{-1}S_{mathbf{x}mathbf{y}}S_{mathbf{y}mathbf{y}}^{-1}S_{mathbf{y}mathbf{x}}$, namely $lambda_1geqcdotsgeq lambda_k$. We show that there exists a threshold $r_cin(0,1)$, such that for each $iin{1,ldots,k}$, when $r_ileq r_c$, $lambda_i$ converges almost surely to the right edge of the limiting spectral distribution of the sample canonical correlation matrix, denoted by $d_r$. When $r_i>r_c$, $lambda_i$ possesses an almost sure limit in $(d_r,1]$, from which we can recover $r_i$ in turn, thus provide an estimate of the latter in the high-dimensional scenario.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا