ترغب بنشر مسار تعليمي؟ اضغط هنا

The technical breakthrough in synthesizing graphene by chemical vapor deposition methods (CVD) has opened up enormous opportunities for large-scale device applications. In order to improve the electrical properties of CVD graphene grown on copper (Cu -CVD graphene), recent efforts have focussed on increasing the grain size of such polycrystalline graphene films to 100 micrometers and larger. While an increase in grain size and hence, a decrease of grain boundary density is expected to greatly enhance the device performance, here we show that the charge mobility and sheet resistance of Cu-CVD graphene is already limited within a single grain. We find that the current high-temperature growth and wet transfer methods of CVD graphene result in quasi-periodic nanoripple arrays (NRAs). Electron-flexural phonon scattering in such partially suspended graphene devices introduces anisotropic charge transport and sets limits to both the highest possible charge mobility and lowest possible sheet resistance values. Our findings provide guidance for further improving the CVD graphene growth and transfer process.
Graphene has exceptional optical, mechanical and electrical properties, making it an emerging material for novel optoelectronics, photonics and for flexible transparent electrode applications. However, the relatively high sheet resistance of graphene is a major constrain for many of these applications. Here we propose a new approach to achieve low sheet resistance in large-scale CVD monolayer graphene using non-volatile ferroelectric polymer gating. In this hybrid structure, large-scale graphene is heavily doped up to 3{times}1013 cm-2 by non-volatile ferroelectric dipoles, yielding a low sheet resistance of 120 {Omega}{Box} at ambient conditions. The graphene-ferroelectric transparent conductors (GFeTCs) exhibit more than 95% transmittance from the visible to the near infrared range owing to the highly transparent nature of the ferroelectric polymer. Together with its excellent mechanical flexibility, chemical inertness and the simple fabrication process of ferroelectric polymers, the proposed GFeTCs represent a new route towards large-scale graphene based transparent electrodes and optoelectronics.
Preparing graphene and its derivatives on functional substrates may open enormous opportunities for exploring the intrinsic electronic properties and new functionalities of graphene. However, efforts in replacing SiO$_{2}$ have been greatly hampered by a very low sample yield of the exfoliation and related transferring methods. Here, we report a new route in exploring new graphene physics and functionalities by transferring large-scale chemical vapor deposition single-layer and bilayer graphene to functional substrates. Using ferroelectric Pb(Zr$_{0.3}$Ti$_{0.7}$)O$_{3}$ (PZT), we demonstrate ultra-low voltage operation of graphene field effect transistors within $pm1$ V with maximum doping exceeding $10^{13},mathrm{cm^{-2}}$ and on-off ratios larger than 10 times. After polarizing PZT, switching of graphene field effect transistors are characterized by pronounced resistance hysteresis, suitable for ultra-fast non-volatile electronics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا