ترغب بنشر مسار تعليمي؟ اضغط هنا

176 - Guan-nan Li , Gang Guo , Bo Ren 2012
We study phenomenological implications of a radiative inverse seesaw dark matter model. In this model, because neutrino masses are generated at two loop level with inverse seesaw, the new physics mass scale can be as low as a few hundred GeV and the model also naturally contain dark matter candidate. The Yukawa couplings linking the SM leptons and new particles can be large. This can lead to large lepton flavor violating effects. We find that future experimental data on $mu to e gamma$ and $mu - e$ conversion can further test the model. The new charged particles can affect significantly the $h to gamma gamma$ branching ratio in the SM. The model is able to explain the deviation between the SM prediction and the LHC data. We also study some LHC signatures of the new particles in the model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا