ترغب بنشر مسار تعليمي؟ اضغط هنا

Layered ruthenates are prototype materials with strong structure-property correlations. We report the structural and physical properties of double-layered perovskite Sr3(Ru1-xMnx)2O7 single crystals with 0<=x<=0.7. Single crystal x-ray diffraction re finements reveal that Mn doping on the Ru site leads to the shrinkage of unit-cell volume and disappearance of (Ru/Mn)O6 octahedron rotation when x>0.16, while the crystal structure remains tetragonal. Correspondingly, the electric and magnetic properties change with x. The electrical resistivity reveals metallic character (d rho/d T>0) at high temperatures but insulating behavior (d rho/d T<0) below a characteristic temperature T_MIT. Interestingly, T_MIT is different from T_M, at which magnetic susceptibility reaches maximum. T_MIT monotonically increases with increasing x while T_M shows non-monotonic dependence with x. The difference between T_MIT and T_M (T_MIT>T_M) becomes larger when x>0.16. The constructed phase diagram consists of five distinct regions, demonstrating that the physical properties of such a system can easily be tuned by chemical doping.
We report temperature and thermal-cycling dependence of surface and bulk structures of double-layered perovskite Sr3Ru2O7 single crystals. The surface and bulk structures were investigated using low-energy electron diffraction (LEED) and single-cryst al X-ray diffraction (XRD) techniques, respectively. Single-crystal XRD data is in good agreement with previous reports for the bulk structure with RuO6 octahedral rotation, which increases with decreasing temperature (~ 6.7(6)degrees at 300 K and ~ 8.1(2) degrees at 90 K). LEED results reveal that the octahedra at the surface are much more distorted with a higher rotation angle (~ 12 degrees between 300 and 80 K) and a slight tilt ((4.5pm2.5) degrees at 300 K and (2.5pm1.7) degrees at 80 K). While XRD data confirms temperature dependence of the unit cell height/width ratio (i.e. lattice parameter c divided by the average of parameters a and b) found in a prior neutron powder diffraction investigation, both bulk and surface structures display little change with thermal cycles between 300 and 80 K.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا