ترغب بنشر مسار تعليمي؟ اضغط هنا

103 - Casey Papovich 2009
We report the detection of the Paschen-alpha emission line in the z=2.515 galaxy SMM J163554.2+661225 using Spitzer spectroscopy. SMM J163554.2+661225 is a sub-millimeter-selected infrared (IR)-luminous galaxy maintaining a high star-formation rate ( SFR), with no evidence of an AGN from optical or infrared spectroscopy, nor X-ray emission. This galaxy is lensed gravitationally by the cluster Abell 2218, making it accessible to Spitzer spectroscopy. Correcting for nebular extinction derived from the H-alpha and Pa-alpha lines, the dust-corrected luminosity is L(Pa-alpha) = (2.57+/-0.43) x 10^43 erg s^-1, which corresponds to an ionization rate, Q = (1.6+/-0.3) x 10^55 photons s^-1. The instantaneous SFR is 171+/-28 solar masses per year, assuming a Salpeter-like initial mass function. The total IR luminosity derived using 70, 450, and 850 micron data is L(IR) = (5-10) x 10^11 solar luminosities, corrected for gravitational lensing. This corresponds to a SFR=90-180 solar masses per year, where the upper range is consistent with that derived from the Paschen-alpha luminosity. While the L(8 micron) / L(Pa-alpha) ratio is consistent with the extrapolated relation observed in local galaxies and star-forming regions, the rest-frame 24 micron luminosity is significantly lower with respect to local galaxies of comparable Paschen-alpha luminosity. Thus, SMM J163554.2+661225 arguably lacks a warmer dust component (T ~ 70 K), which is associated with deeply embedded star formation, and which contrasts with local galaxies with comparable SFRs. Rather, the starburst is consistent with star-forming local galaxies with intrinsic luminosities, L(IR) ~ 10^10 solar luminosities, but scaled-up by a factor of 10-100.
We have used the Sloan Digital Sky Survey (SDSS) to undertake an investigation of lopsidedness in a sample of ~25,000 nearby galaxies (z < 0.06). We use the m=1 azimuthal Fourier mode between the 50% and 90% light radii as our measure of lopsidedness . The SDSS spectra are used to measure the properties of the stars, gas, and black hole in the central-most few-kpc-scale region. We show that there is a strong link between lopsidedness in the outer parts of the galactic disk and the youth of the stellar population in the central region. This link is independent of the other structural properties of the galaxy. These results provide a robust statistical characterization of the connections between accretion/interactions/mergers and the resulting star formation. We also show that residuals in the galaxy mass-metallicity relation correlate with lopsidedness (at fixed mass, the more metal-poor galaxies are more lopsided). This suggests that the events causing lopsidedness and enhanced star formation deliver lower metallicity gas into the galaxys central region. Finally, we find that there is a trend for the more powerful active galactic nuclei to be hosted by more lopsided galaxies (at fixed galaxy mass, density, or concentration). However if we compare samples matched to have both the same structures and central stellar populations, we then find no difference in lopsidedness between active and non-active galaxies. This leads to the following picture. The presence of cold gas in the central region of a galaxy (irrespective of its origin) is essential for both star-formation and black hole growth. The delivery of cold gas is aided by the processes that produce lopsidedness. Other processes on scales smaller than we can probe with our data are required to transport the gas to the black hole.
Large-scale asymmetries in the stellar mass distribution in galaxies are believed to trace non-equilibrium situations in the luminous and/or dark matter component. These may arise in the aftermath of events like mergers, accretion, and tidal interact ions. These events are key in the evolution of galaxies. In this paper we quantify the large-scale lopsidedness of light distributions in 25155 galaxies at z < 0.06 from the Sloan Digital Sky Survey Data Release 4 using the m = 1 azimuthal Fourier mode. We show that the lopsided distribution of light is primarily due to a corresponding lopsidedness in the stellar mass distribution. Observational effects, such as seeing, Poisson noise, and inclination, introduce only small errors in lopsidedness for the majority of this sample. We find that lopsidedness correlates strongly with other basic galaxy structural parameters: galaxies with low concentration, stellar mass, and stellar surface mass density tend to be lopsided, while galaxies with high concentration, mass, and density are not. We find that the strongest and most fundamental relationship between lopsidedness and the other structural parameters is with the surface mass density. We also find, in agreement with previous studies, that lopsidedness tends to increase with radius. Both these results may be understood as a consequence of several factors. The outer regions of galaxies and low-density galaxies are more susceptible to tidal perturbations, and they also have longer dynamical times (so lopsidedness will last longer). They are also more likely to be affected by any underlying asymmetries in the dark matter halo.
We study the infrared (IR) properties of high-redshift galaxies using deep Spitzer 24, 70, and 160 micron data. Our primary interest is to improve the constraints on the total IR luminosities, L(IR), of these galaxies. We combine the Spitzer data in the southern Extended Chandra Deep Field with a K-band-selected galaxy sample and photometric redshifts from the Multiwavelength Survey by Yale-Chile. We used a stacking analysis to measure the average 70 and 160 micron flux densities of 1.5 < z < 2.5 galaxies as a function of 24 micron flux density, X-ray activity, and rest-frame near-IR color. Galaxies with 1.5 < z < 2.5 and S(24)=53-250 micro-Jy have L(IR) derived from their average 24-160 micron flux densities within factors of 2-3 of those derived from the 24 micron flux densities only. However, L(IR) derived from the average 24-160 micron flux densities for galaxies with S(24) > 250 micro-Jy and 1.5 < z < 2.5 are lower than those derived using only the 24 micron flux density by factors of 2-10. Galaxies with S(24) > 250 micro-Jy have S(70)/S(24) flux ratios comparable to sources with X-ray detections or red rest-frame IR colors, suggesting that warm dust possibly heated by AGN may contribute to the high 24 micron emission. Based on the average 24-160 micron flux densities, nearly all 24 micron-selected galaxies at 1.5 < z < 2.5 have L(IR) < 6 x 10^12 solar luminosities, which if attributed to star formation corresponds to < 1000 solar masses per year. This suggests that high redshift galaxies may have similar star formation efficiencies and feedback processes as local analogs. Objects with L(IR) > 6 x 10^12 solar luminosities are quite rare, with a surface density ~ 30 +/- 10 per sq. deg, corresponding to ~ 2 +/- 1 x 10^-6 Mpc^-3 over 1.5 < z < 2.5.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا