ترغب بنشر مسار تعليمي؟ اضغط هنا

The Crab Nebula was formed after the collapse of a massive star about a thousand years ago, leaving behind a pulsar that inflates a bubble of ultra-relativistic electron-positron pairs permeated with magnetic field. The observation of brief but brigh t flares of energetic gamma rays suggests that pairs are accelerated to PeV energies within a few days; such rapid acceleration cannot be driven by shocks. Here, it is argued that the flares may be the smoking gun of magnetic dissipation in the Nebula. Using 2D and 3D particle-in-cell simulations, it is shown that the observations are consistent with relativistic magnetic reconnection, where pairs are subject to strong radiative cooling. The Crab flares may highlight the importance of relativistic magnetic reconnection in astrophysical sources.
The discovery of rapid synchrotron gamma-ray flares above 100 MeV from the Crab Nebula has attracted new interest in alternative particle acceleration mechanisms in pulsar wind nebulae. Diffuse shock-acceleration fails to explain the flares because p article acceleration and emission occur during a single or even sub-Larmor timescale. In this regime, the synchrotron energy losses induce a drag force on the particle motion that balances the electric acceleration and prevents the emission of synchrotron radiation above 160 MeV. Previous analytical studies and 2D particle-in-cell (PIC) simulations indicate that relativistic reconnection is a viable mechanism to circumvent the above difficulties. The reconnection electric field localized at X-points linearly accelerates particles with little radiative energy losses. In this paper, we check whether this mechanism survives in 3D, using a set of large PIC simulations with radiation reaction force and with a guide field. In agreement with earlier works, we find that the relativistic drift kink instability deforms and then disrupts the layer, resulting in significant plasma heating but few non-thermal particles. A moderate guide field stabilizes the layer and enables particle acceleration. We report that 3D magnetic reconnection can accelerate particles above the standard radiation reaction limit, although the effect is less pronounced than in 2D with no guide field. We confirm that the highest energy particles form compact bunches within magnetic flux ropes, and a beam tightly confined within the reconnection layer, which could result in the observed Crab flares when, by chance, the beam crosses our line of sight.
Photonic crystal (PhC) defect cavities that support an accelerating mode tend to trap unwanted higher-order modes (HOMs) corresponding to zero-group-velocity PhC lattice modes at the top of the bandgap. The effect is explained quite generally from ph otonic band and perturbation theoretical arguments. Transverse wakefields resulting from this effect are observed in a hybrid dielectric PhC accelerating cavity based on a triangular lattice of sapphire rods. These wakefields are, on average, an order of magnitude higher than those in the waveguide-damped Compact Linear Collider (CLIC) copper cavities. The avoidance of translational symmetry (and, thus, the bandgap concept) can dramatically improve HOM damping in PhC-based structures.
It is generally accepted that astrophysical sources cannot emit synchrotron radiation above 160 MeV in their rest frame. This limit is given by the balance between the accelerating electric force and the radiation reaction force acting on the electro ns. The discovery of synchrotron gamma-ray flares in the Crab Nebula, well above this limit, challenges this classical picture of particle acceleration. To overcome this limit, particles must accelerate in a region of high electric field and low magnetic field. This is possible only with a non-ideal magnetohydrodynamic process, like magnetic reconnection. We present the first numerical evidence of particle acceleration beyond the synchrotron burnoff limit, using a set of 2D particle-in-cell simulations of ultra-relativistic pair plasma reconnection. We use a new code, Zeltron, that includes self-consistently the radiation reaction force in the equation of motion of the particles. We demonstrate that the most energetic particles move back and forth across the reconnection layer, following relativistic Speiser orbits. These particles then radiate >160 MeV synchrotron radiation rapidly, within a fraction of a full gyration, after they exit the layer. Our analysis shows that the high-energy synchrotron flux is highly variable in time because of the strong anisotropy and inhomogeneity of the energetic particles. We discover a robust positive correlation between the flux and the cut-off energy of the emitted radiation, mimicking the effect of relativistic Doppler amplification. A strong guide field quenches the emission of >160 MeV synchrotron radiation. Our results are consistent with the observed properties of the Crab flares, supporting the reconnection scenario.
For embedded boundary electromagnetics using the Dey-Mittra algorithm, a special grad-div matrix constructed in this work allows use of multigrid methods for efficient inversion of Maxwells curl-curl matrix. Efficient curl-curl
A more accurate, stable, finite-difference time-domain (FDTD) algorithm is developed for simulating Maxwells equations with isotropic or anisotropic dielectric materials. This algorithm is in many cases more accurate than previous algorithms (G. R. W erner et. al., 2007; A. F. Oskooi et. al., 2009), and it remedies a defect that causes instability with high dielectric contrast (usually for epsilon{} significantly greater than 10) with either isotropic or anisotropic dielectrics. Ultimately this algorithm has first-order error (in the grid cell size) when the dielectric boundaries are sharp, due to field discontinuities at the dielectric interface. Accurate treatment of the discontinuities, in the limit of infinite wavelength, leads to an asymmetric, unstable update (C. A. Bauer et. al., 2011), but the symmetrized version of the latter is stable and more accurate than other FDTD methods. The convergence of field values supports the hypothesis that global first-order error can be achieved by second-order error in bulk material with zero-order error on the surface. This latter point is extremely important for any applications measuring surface fields.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا