ترغب بنشر مسار تعليمي؟ اضغط هنا

Bottom-up coarse-grained molecular dynamics models are parameterized using complex effective Hamiltonians. These models are typically optimized to approximate high dimensional data from atomistic simulations. In contrast, human validation of these mo dels is often limited to low dimensional statistics that do not necessarily differentiate between the CG model and said atomistic simulations. We propose that explainable machine learning can directly convey high-dimensional error to scientists and use Shapley additive explanations do so in two coarse-grained protein models.
Numerous molecular systems, including solutions, proteins, and composite materials, can be modeled using mixed-resolution representations, of which the quantum mechanics/molecular mechanics (QM/MM) approach has become the most widely used. However, t he QM/MM approach often faces a number of challenges, including the slow sampling of the large configuration space for the MM part, the high cost of repetitive QM computations for changing coordinates of atoms in the MM surroundings, and a difficulty in providing a simple, qualitative interpretation of numerical results in terms of the influence of the molecular environment upon the active QM region. In this paper, we address these issues by combining QM/MM modeling with the methodology of bottom-up coarse-graining (CG) to provide the theoretical basis for a systematic quantum-mechanical/coarse-grained molecular mechanics (QM/CG-MM) mixed resolution approach. A derivation of the method is presented based on a combination of statistical mechanics and quantum mechanics, leading to an equation for the effective Hamiltonian of the QM part, a central concept in the QM/CG-MM theory. A detailed analysis of different contributions to the effective Hamiltonian from electrostatic, induction, dispersion and exchange interactions between the QM part and the surroundings is provided, serving as a foundation for a potential hierarchy of QM/CG-MM methods varying in their accuracy and computational cost. A relationship of the QM/CG-MM methodology to other mixed resolution approaches is also discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا