ترغب بنشر مسار تعليمي؟ اضغط هنا

We present constraints on the primordial power spectrum of adiabatic fluctuations using data from the 2008 Southern Survey of the Atacama Cosmology Telescope (ACT). The angular resolution of ACT provides sensitivity to scales beyond ell = 1000 for re solution of multiple peaks in the primordial temperature power spectrum, which enables us to probe the primordial power spectrum of adiabatic scalar perturbations with wavenumbers up to k simeq 0.2 Mpc^{-1}. We find no evidence for deviation from power-law fluctuations over two decades in scale. Matter fluctuations inferred from the primordial temperature power spectrum evolve over cosmic time and can be used to predict the matter power spectrum at late times; we illustrate the overlap of the matter power inferred from CMB measurements (which probe the power spectrum in the linear regime) with existing probes of galaxy clustering, cluster abundances and weak lensing constraints on the primordial power. This highlights the range of scales probed by current measurements of the matter power spectrum.
We present measurements of the auto- and cross-frequency correlation power spectra of the cosmic (sub)millimeter background at: 250, 350, and 500 um (1200, 860, and 600 GHz) from observations made with the Balloon-borne Large Aperture Submillimeter T elescope, BLAST; and at 1380 and 2030 um (218 and 148 GHz) from observations made with the Atacama Cosmology Telescope, ACT. The overlapping observations cover 8.6 deg^2 in an area relatively free of Galactic dust near the south ecliptic pole (SEP). The ACT bands are sensitive to radiation from the CMB, the Sunyaev-Zeldovich (SZ) effect from galaxy clusters, and to emission by radio and dusty star-forming galaxies (DSFGs), while the dominant contribution to the BLAST bands is from DSFGs. We confirm and extend the BLAST analysis of clustering with an independent pipeline, and also detect correlations between the ACT and BLAST maps at over 25sigma significance, which we interpret as a detection of the DSFGs in the ACT maps. In addition to a Poisson component in the cross-frequency power spectra, we detect a clustered signal at >4sigma, and using a model for the DSFG evolution and number counts, we successfully fit all our spectra with a linear clustering model and a bias that depends only on redshift and not on scale. Finally, the data are compared to, and generally agree with, phenomenological models for the DSFG population. This study represents a first of its kind, and demonstrates the constraining power of the cross-frequency correlation technique to constrain models for the DSFGs. Similar analyses with more data will impose tight constraints on future models.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا