ترغب بنشر مسار تعليمي؟ اضغط هنا

Randomness has attracted great interest in the field of music composition for quite some time. As early as 1962, Iannis Xenakis started exploring a stochastic approach to randomness by using computer-based interlinking probability functions to determ ine compositional structure, pitches and their durations. Soon after, composers and music technologists started to explore randomness with various methods of algorithmic compositions, sometimes with the help of artificial intelligence. However, in most cases, the source of randomness they used was in fact deterministic in nature. That is to say, the random numbers that they employed are imperfect in the strict sense (simply put, perfect random numbers never have repeating patterns). Moreover, the method in which they produced such randomness was extrinsic to the method in which randomness was applied. In this project, we attempt to take a further step by directly producing sound events from the genuine quantum true randomness of quantum physical systems. Through this method, we aim at achieving a new sense of aesthetic effect in music which derives from the true randomness that prevails in the natural quantum world.
The characterization of diffusion processes is a keystone in our understanding of a variety of physical phenomena. Many of these deviate from Brownian motion, giving rise to anomalous diffusion. Various theoretical models exists nowadays to describe such processes, but their application to experimental setups is often challenging, due to the stochastic nature of the phenomena and the difficulty to harness reliable data. The latter often consists on short and noisy trajectories, which are hard to characterize with usual statistical approaches. In recent years, we have witnessed an impressive effort to bridge theory and experiments by means of supervised machine learning techniques, with astonishing results. In this work, we explore the use of unsupervised methods in anomalous diffusion data. We show that the main diffusion characteristics can be learnt without the need of any labelling of the data. We use such method to discriminate between anomalous diffusion models and extract their physical parameters. Moreover, we explore the feasibility of finding novel types of diffusion, in this case represented by compositions of existing diffusion models. At last, we showcase the use of the method in experimental data and demonstrate its advantages for cases where supervised learning is not applicable.
Deviations from Brownian motion leading to anomalous diffusion are ubiquitously found in transport dynamics, playing a crucial role in phenomena from quantum physics to life sciences. The detection and characterization of anomalous diffusion from the measurement of an individual trajectory are challenging tasks, which traditionally rely on calculating the mean squared displacement of the trajectory. However, this approach breaks down for cases of important practical interest, e.g., short or noisy trajectories, ensembles of heterogeneous trajectories, or non-ergodic processes. Recently, several new approaches have been proposed, mostly building on the ongoing machine-learning revolution. Aiming to perform an objective comparison of methods, we gathered the community and organized an open competition, the Anomalous Diffusion challenge (AnDi). Participating teams independently applied their own algorithms to a commonly-defined dataset including diverse conditions. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, providing practical advice for users and a benchmark for developers.
Computationally intractable tasks are often encountered in physics and optimization. Such tasks often comprise a cost function to be optimized over a so-called feasible set, which is specified by a set of constraints. This may yield, in general, to d ifficult and non-convex optimization tasks. A number of standard methods are used to tackle such problems: variational approaches focus on parameterizing a subclass of solutions within the feasible set; in contrast, relaxation techniques have been proposed to approximate it from outside, thus complementing the variational approach by providing ultimate bounds to the global optimal solution. In this work, we propose a novel approach combining the power of relaxation techniques with deep reinforcement learning in order to find the best possible bounds within a limited computational budget. We illustrate the viability of the method in the context of finding the ground state energy of many-body quantum systems, a paradigmatic problem in quantum physics. We benchmark our approach against other classical optimization algorithms such as breadth-first search or Monte-Carlo, and we characterize the effect of transfer learning. We find the latter may be indicative of phase transitions, with a completely autonomous approach. Finally, we provide tools to generalize the approach to other common applications in the field of quantum information processing.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا