ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the relation between the chemical composition and the type of dust present in a group of 20 Galactic planetary nebulae (PNe) that have high quality optical and infrared spectra. The optical spectra are used, together with the best available ionization correction factors, to calculate the abundances of Ar, C, Cl, He, N, Ne, and O relative to H. The infrared spectra are used to classify the PNe in two groups depending on whether the observed dust features are representative of oxygen-rich or carbon-rich environments. The sample contains one object from the halo, eight from the bulge, and eleven from the local disc. We compare their chemical abundances with nucleosynthesis model predictions and with the ones obtained in seven Galactic H II regions of the solar neighbourhood. We find evidence of O enrichment (by $sim$ 0.3 dex) in all but one of the PNe with carbon-rich dust (CRD). Our analysis shows that Ar, and especially Cl, are the best metallicity indicators of the progenitors of PNe. There is a tight correlation between the abundances of Ar and Cl in all the objects, in agreement with a lockstep evolution of both elements. The range of metallicities implied by the Cl abundances covers one order of magnitude and we find significant differences in the initial masses and metallicities of the PNe with CRD and oxygen-rich dust (ORD). The PNe with CRD tend to have intermediate masses and low metallicities, whereas most of the PNe with ORD show higher enrichments in N and He, suggesting that they had high-mass progenitors.
Photoionization models obtained with numerical codes are widely used to study the physics of the interstellar medium (Planetary Nebulae, H II regions, etc). Grid of models are performed to understand what are the effects of the different parameters u sed to describe the regions on the observables (mainly emission line intensities). Most of the time, only a small part of the computed results of such grids are published, and they are sometimes hard to obtain in a user-friendly format. We present here the Mexican Million Models dataBase (3MdB), an effort of resolving both of these issues in the form of a database of photoionization models, easily accessible throught the MySQL protocol, and containing a lot of usefull outputs from the models, such as the intensities of 178 emission lines, the ionic fractions of all the ions, etc. Some examples of the use of the 3MdB are also presented.
We study the dust present in 56 Galactic planetary nebulae (PNe) through their iron depletion factors, their C/O abundance ratios (in 51 objects), and the dust features that appear in their infrared spectra (for 33 objects). Our sample objects have d eep optical spectra of good quality, and most of them also have ultraviolet observations. We use these observations to derive the iron abundances and the C/O abundance ratios in a homogeneous way for all the objects. We compile detections of infrared dust features from the literature and we analyze the available Spitzer/IRS spectra. Most of the PNe have C/O ratios below one and show crystalline silicates in their infrared spectra. The PNe with silicates have C/O < 1, with the exception of Cn 1-5. Most of the PNe with dust features related to C-rich environments (SiC or the 30 {mu}m feature usually associated to MgS) have C/O $gtrsim$ 0.8. PAHs are detected over the full range of C/O values, including 6 objects that also show silicates. Iron abundances are low in all the objects, implying that more than 90% of their iron atoms are deposited into dust grains. The range of iron depletions in the sample covers about two orders of magnitude, and we find that the highest depletion factors are found in C-rich objects with SiC or the 30 {mu}m feature in their infrared spectra, whereas some of the O-rich objects with silicates show the lowest depletion factors.
We compute a large grid of photoionization models that covers a wide range of physical parameters and is representative of most of the observed PNe. Using this grid, we derive new formulae for the ionization correction factors (ICFs) of He, O, N, Ne, S, Ar, Cl, and C. Analytical expressions to estimate the uncertainties arising from our ICFs are also provided. This should be useful since these uncertainties are usually not considered when estimating the error bars in element abundances. Our ICFs are valid over a variety of assumptions such as the input metallicities, the spectral energy distribution of the ionizing source, the gas distribution, or the presence of dust grains. Besides, the ICFs are adequate both for large aperture observations and for pencil-beam observations in the central zones of the nebulae. We test our ICFs on a large sample of observed PNe that extends as far as possible in ionization, central star temperature, and metallicity, by checking that the Ne/O, S/O, Ar/O, and Cl/O ratios show no trend with the degree of ionization. Our ICFs lead to significant differences in the derived abundance ratios as compared with previous determinations, especially for N/O, Ne/O, and Ar/O.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا