ترغب بنشر مسار تعليمي؟ اضغط هنا

We study numerically the yielding transition of a two dimensional model glass subjected to athermal quasi-static cyclic shear deformation, with the aim of investigating the effect on the yielding behaviour of the degree of annealing, which in turn de pends on the preparation protocol. We find two distinct regimes of annealing separated by a threshold energy. Poorly annealed glasses progressively evolve towards the threshold energy as the strain amplitude is increased towards the yielding value. Well annealed glasses with initial energies below the threshold energy exhibit stable behaviour, with negligible change in energy with increasing strain amplitude, till they yield. Discontinuities in energy and stress at yielding increase with the degree of annealing, consistently with recent results found in three dimensions. We observe significant structural change with strain amplitude that closely mirrors the changes in energy and stresses. We investigate groups of particles that are involved in plastic rearrangements. We analyse the distributions of avalanche sizes, of clusters of connected rearranging particles, and related quantities, employing finite size scaling analysis. We verify previously investigated relations between exponents characterising these distributions, and a newly proposed relation between exponents describing avalanche and cluster size distributions.
We investigate avalanches associated with plastic rearrangements and the nature of structural change in the prototypical strong glass, silica, computationally. Although qualitative aspects of yielding in silica are similar to other glasses, we find t hat the statistics of avalanches exhibits non-trivial behaviour. Investigating the statistics of avalanches and clusters in detail, we propose and verify a new relation between exponents characterizing the size distribution of avalanches and clusters. Across the yielding transition, anomalous structural change and densification, associated with a suppression of tetrahedral order, is observed to accompany strain localisation.
We present a numerical investigation of the density fluctuations in a model glass under cyclic shear deformation. At low amplitude of shear, below yielding, the system reaches a steady absorbing state in which density fluctuations are suppressed reve aling a clear fingerprint of hyperuniformity up to a finite length scale. The opposite scenario is observed above yielding, where the density fluctuations are strongly enhanced. We demonstrate that the transition to this state is accompanied by a spatial phase separation into two distinct hyperuniform regions, as a consequence of shear band formation above the yield amplitude.
Yielding behavior in amorphous solids has been investigated in computer simulations employing uniform and cyclic shear deformation. Recent results characterise yielding as a discontinuous transition, with the degree of annealing of glasses being a si gnificant parameter. Under uniform shear, discontinuous changes in stresses at yielding occur in the high annealing regime, separated from the poor annealing regime in which yielding is gradual. In cyclic shear simulations, relatively poorly annealed glasses become progressively better annealed as the yielding point is approached, with a relatively modest but clear discontinuous change at yielding. To understand better the role of annealing on yielding characteristics, we perform athermal quasistaic cyclic shear simulations of glasses prepared with a wide range of annealing in two qualitatively different systems -- a model of silica (a network glass), and an atomic binary mixture glass. Two strikingly different regimes of behavior emerge: Energies of poorly annealed samples evolve towards a unique threshold energy as the strain amplitude increases, before yielding takes place. Well annealed samples, in contrast, show no significant energy change with strain amplitude till they yield, accompanied by discontinuous energy changes that increase with the degree of annealing. Significantly, the threshold energy for both systems correspond to dynamical crossover temperatures associated with changes in the character of the energy landscape sampled by glass forming liquids. Uniform shear simulations support the recently discussed scenario of a random critical point separating ductile and brittle yielding, which our results now associate with dynamical crossover temperatures in the corresponding liquids.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا