ترغب بنشر مسار تعليمي؟ اضغط هنا

The rich and electrostatically tunable phase diagram exhibited by moire materials has made them a suitable platform for hosting single material multi-purpose devices. To engineer such devices, understanding electronic transport and localization acros s electrostatically defined interfaces is of fundamental importance. Little is known, however, about how the interplay between the band structure originating from the moire lattice and electric potential gradients affects electronic confinement. Here, we electrostatically define a cavity across a twisted double bilayer graphene sample. We observe two kinds of Fabry-Perot oscillations. The first, independent of charge polarity, stems from confinement of electrons between dispersive-band/flat-band interfaces. The second arises from junctions between regions tuned into different flat bands. When tuning the out-of-plane electric field across the device, we observe Coulomb blockade resonances in transport, an indication of strong electronic confinement. From the gate, magnetic field and source-drain voltage dependence of the resonances, we conclude that quantum dots form at the interfaces of the Fabry-Perot cavity. Our results constitute a first step towards better understanding interfacial phenomena in single crystal moire devices.
In the past two years, magic-angle twisted bilayer graphene has emerged as a uniquely versatile experimental platform that combines metallic, superconducting, magnetic and insulating phases in a single crystal. In particular the ability to tune the s uperconducting state with a gate voltage opened up intriguing prospects for novel device functionality. Here we present the first demonstration of a device based on the interplay between two distinct phases in adjustable regions of a single magic-angle twisted bilayer graphene crystal. We electrostatically define the superconducting and insulating regions of a Josephson junction and observe tunable DC and AC Josephson effects. We show that superconductivity is induced in different electronic bands and describe the junction behaviour in terms of these bands, taking in consideration interface effects as well. Shapiro steps, a hallmark of the AC Josephson effect and therefore the formation of a Josephson junction, are observed. This work is an initial step towards devices where separate gate-defined correlated states are connected in single-crystal nanostructures. We envision applications in superconducting electronics and quantum information technology as well as in studies exploring the nature of the superconducting state in magic-angle twisted bilayer graphene.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا