ترغب بنشر مسار تعليمي؟ اضغط هنا

The network virtualization paradigm envisions an Internet where arbitrary virtual networks (VNets) can be specified and embedded over a shared substrate (e.g., the physical infrastructure). As VNets can be requested at short notice and for a desired time period only, the paradigm enables a flexible service deployment and an efficient resource utilization. This paper investigates the security implications of such an architecture. We consider a simple model where an attacker seeks to extract secret information about the substrate topology, by issuing repeated VNet embedding requests. We present a general framework that exploits basic properties of the VNet embedding relation to infer the entire topology. Our framework is based on a graph motif dictionary applicable for various graph classes. Moreover, we provide upper bounds on the request complexity, the number of requests needed by the attacker to succeed.
Online Social Networks (OSN) are among the most popular applications in todays Internet. Decentralized online social networks (DOSNs), a special class of OSNs, promise better privacy and autonomy than traditional centralized OSNs. However, ensuring a vailability of content when the content owner is not online remains a major challenge. In this paper, we rely on the structure of the social graphs underlying DOSN for replication. In particular, we propose that friends, who are anyhow interested in the content, are used to replicate the users content. We study the availability of such natural replication schemes via both theoretical analysis as well as simulations based on data from OSN users. We find that the availability of the content increases drastically when compared to the online time of the user, e. g., by a factor of more than 2 for 90% of the users. Thus, with these simple schemes we provide a baseline for any more complicated content replication scheme.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا