ترغب بنشر مسار تعليمي؟ اضغط هنا

We present cosmological zoom-in hydro-dynamical simulations for the formation of disc galaxies, implementing dust evolution and dust promoted cooling of hot gas. We couple an improved version of our previous treatment of dust evolution, which adopts the two-size approximation to estimate the grain size distribution, with the MUPPI star formation and feedback sub-resolution model. Our dust evolution model follows carbon and silicate dust separately. To distinguish differences induced by the chaotic behaviour of simulations from those genuinely due to different simulation set-up, we run each model six times, after introducing tiny perturbations in the initial conditions. With this method, we discuss the role of various dust-related physical processes and the effect of a few possible approximations adopted in the literature. Metal depletion and dust cooling affect the evolution of the system, causing substantial variations in its stellar, gas and dust content. We discuss possible effects on the Spectral Energy Distribution of the significant variations of the size distribution and chemical composition of grains, as predicted by our simulations during the evolution of the galaxy. We compare dust surface density, dust-to-gas ratio and small-to-big grain mass ratio as a function of galaxy radius and gas metallicity predicted by our fiducial run with recent observational estimates for three disc galaxies of different masses. The general agreement is good, in particular taking into account that we have not adjusted our model for this purpose.
Contradictory results have been reported on the time evolution of the alignment between clusters and their Brightest Cluster Galaxy (BCG). We study this topic by analyzing cosmological hydro-simulations of 24 massive clusters with $M_{200}|_{z=0} gtr sim 10^{15}, M_odot$, plus 5 less massive with $1 times 10^{14} lesssim M_{200}|_{z=0} lesssim 7 times 10^{14}, M_odot$, which have already proven to produce realistic BCG masses. We compute the BCG alignment with both the distribution of cluster galaxies and the dark matter (DM) halo. At redshift $z=0$, the major axes of the simulated BCGs and their host cluster galaxy distributions are aligned on average within 20$^circ$. The BCG alignment with the DM halo is even tighter. The alignment persists up to $zlesssim2$ with no evident evolution. This result continues, although with a weaker signal, when considering the projected alignment. The cluster alignment with the surrounding distribution of matter ($3R_{200}$) is already in place at $zsim4$ with a typical angle of $35^circ$, before the BCG-Cluster alignment develops. The BCG turns out to be also aligned with the same matter distribution, albeit always to a lesser extent. These results taken together might imply that the BCG-Cluster alignment occurs in an outside-in fashion. Depending on their frequency and geometry, mergers can promote, destroy or weaken the alignments. Clusters that do not experience recent major mergers are typically more relaxed and aligned with their BCG. In turn, accretions closer to the cluster elongation axis tend to improve the alignment as opposed to accretions closer to the cluster minor axis.
We implement a state-of-the-art treatment of the processes affecting the production and Interstellar Medium (ISM) evolution of carbonaceous and silicate dust grains within SPH simulations. We trace the dust grain size distribution by means of a two-s ize approximation. We test our method on zoom-in simulations of four massive ($M_{200} geq 3 times 10^{14} M_{odot}$) galaxy clusters. We predict that during the early stages of assembly of the cluster at $z gtrsim 3$, where the star formation activity is at its maximum in our simulations, the proto-cluster regions are rich of dusty gas. Compared to the case in which only dust production in stellar ejecta is active, if we include processes occurring in the cold ISM,the dust content is enhanced by a factor $2-3$. However, the dust properties in this stage turn out to be significantly different than those observationally derived for the {it average} Milky Way dust, and commonly adopted in calculations of dust reprocessing. We show that these differences may have a strong impact on the predicted spectral energy distributions. At low redshift in star forming regions our model reproduces reasonably well the trend of dust abundances over metallicity as observed in local galaxies. However we under-produce by a factor of 2 to 3 the total dust content of clusters estimated observationally at low redshift, $z lesssim 0.5$ using IRAS, Planck and Herschel satellites data. This discrepancy can be solved by decreasing the efficiency of sputtering which erodes dust grains in the hot Intracluster Medium (ICM).
75 - Laura Silva 2004
Granato et al (2004) have elaborated a physically grounded model exploiting the mutual feedback between star-forming spheroidal galaxies and the active nuclei growing in their cores to overcome, in the framework of the hierarchical clustering scenari o for galaxy formation, one of the main challenges facing such scenario, the fact that massive spheroidal galaxies appear to have formed much earlier and faster than predicted by previous semi-analytical models. After having assessed the values of the two parameters that control the effect of the complex radiative transfer processes on the time-dependent SEDs we have compared the model predictions with a variety of IR to mm data. Our results support a rather strict continuity between objects where stars formed and evolved massive early-type galaxies, indicating that large spheroidal galaxies formed most of their stars when they were already assembled as single objects. The model is successful in reproducing the observed z distribution of Kle20 galaxies at z>1, in contrast with both the classical monolithic and the semi-analytic models, the ratio of star-forming to passively evolving spheroids and the counts and z distributions of EROs. The model also favourably compares with the ISOCAM 6.7 mu counts, with the corresponding z distribution, and with IRAC counts, which probe primarily the passive evolution phase, and with the submm SCUBA and MAMBO data, probing the active star-formation phase. The observed fraction of 24mu selected sources with no detectable emission in either the 8mu or R band nicely corresponds to the predicted surface density of star-forming spheroids with 8mu fluxes below the detection limit. Predictions for the z distributions of 24mu sources detected by MIPS surveys are pointed out. [Abridged]
We estimate the contribution of AGNs and of their host galaxies to the infrared background. We use the luminosity function and evolution of AGNs recently determined by the hard X-ray surveys, and new Spectral Energy Distributions connecting the X-ray and the infrared emission, divided in intervals of absorption. These two ingredients allow us to determine the contribution of AGNs to the infrared background by using mostly observed quantities, with only minor assumptions. We obtain that AGN emission contributes little to the infrared background ($<$5% over most of the infrared bands), implying that the latter is dominated by star formation. However, AGN host galaxies may contribute significantly to the infrared background, and more specifically 10--20% in the 1--20$mu$m range and $sim$5% at $lambda<60mu m$. We also give the contribution of AGNs and of their host galaxies to the source number counts in various infrared bands, focusing on those which will be observed with Spitzer. We also report a significant discrepancy between the expected contribution of AGN hosts to the submm background and bright submm number counts with the observational constraints. We discuss the causes and implications of this discrepancy and the possible effects on the Spitzer far-IR bands.
73 - Laura Silva 2004
Granato et al(2004) have elaborated a physically grounded model exploiting the mutual feedback between star-forming spheroidal galaxies and the active nuclei growing in their cores to overcome, within the hierarchical clustering scenario for galaxy f ormation, one of the main challenges facing such scenario, the fact that massive spheroidal galaxies appear to have formed earlier and faster than predicted by previous models. Adopting the choice by Granato et al for the parameters governing the history of the SF,of chemical abundances and of the gas and dust content of galaxies, we are left with only two parameters affecting the time and mass dependent SED of spheroidal galaxies. After complementing the model with a simple description of evolutionary properties of starburst, normal late-type galaxies and AGNs we have successfully compared the model with a broad variety of observational data, deep K-band, ISO, IRAS, SCUBA, radio counts, the corresponding redshift distributions, the IR background spectrum, and also with data for EROs. We also present detailed predictions for the GOODS and SWIRE surveys with the Spitzer Space Telescope. We find that the GOODS deep survey at 24$mu$m and the SWIRE surveys at 70 and 160$mu$m are likely to be severely confusion limited. The GOODS surveys in the IRAC channels are expected to resolve most of the background, to explore the full passive evolution phase of spheroidal galaxies and most of their active star-forming phase, detecting galaxies up to zsimeq 4. A substantial number of high z star-forming spheroidal galaxies should also be detected by the 24mum SWIRE and GOODS surveys, while the 70 and 160mum will be particularly useful to study the evolution of such galaxies in the range 1 lsim z lsim 2.[abridged]
We revisit the nature of the FIR/Radio correlation by means of the most recent models for star forming galaxies. We model the IR emission with our population synthesis code, GRASIL (Silva et al. 1998). As for the radio emission, we revisit the simple model of Condon & Yin (1990). We find that a tightFIR/Radio correlation is natural when the synchrotron mechanism dominates over the inverse Compton, and the electrons cooling time is shorter than the fading time of the supernova rate. Observations indicate that both these conditions are met in star forming galaxies. However since the radio non thermal emission is delayed, deviations are expected both in the early phases of a starburst, when the radio thermal component dominates, and in the post-starburst phase, when the bulk of the NT component originates from less massive stars. This delay allows the analysis of obscured starbursts with a time resolution of a few tens of Myrs, unreachable with other star formation indicators. We suggest to complement the analysis of the deviations from the FIR/Radio correlation with the radio slope to obtain characteristic parameters of the burst. The analysis of a sample of compact ULIRGs shows that they are intense but transient starbursts, to which one should not apply usual SF indicators devised for constant SF rates. We also discuss the possibility of using the q- radio slope diagram to asses the presence of obscured AGN. A firm prediction of the models is an apparent radio excess during the post-starburst phase, which seems to be typical of a class of star forming galaxies in rich cluster cores. We discuss how deviations from the correlation, due to the evolutionary status of the starburst, affect the technique of photometric redshift determination widely used for high-z sources.
Star forming galaxies exhibit a variety of physical conditions, from quiescent normal spirals to the most powerful dusty starbursts. In order to study these complex systems, we need a suitable tool to analyze the information coming from observations at all wavelengths. We present a new spectro-photometric model which considers in a consistent way starlight as reprocessed by gas and dust. We discuss preliminary results to interpret some observed properties of VLIRGs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا