ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a recalibration of the luminosity-metallicity relation for gas-rich, star-forming dwarfs to magnitudes as faint as M$_R$ ~ -13. We use the Dopita et al. (2013) metallicity calibrations to calibrate the relation for all of the data in this analysis. In metallicity-luminosity space we find two sub-populations within a sample of high-confidence SDSS DR8 star-forming galaxies; 52% are metal-rich giants and 48% are metal-medium galaxies. Metal-rich dwarfs classified as tidal dwarf galaxy (TDG) candidates in the literature are typically of metallicity 12 + log(O/H) = 8.70 $pm$ 0.05, while SDSS dwarfs fainter than M$_R$ = -16 have a mean metallicity of 12 + log(O/H) = 8.28 $pm$ 0.10, regardless of their luminosity, indicating that there is an approximate floor to the metallicity of low luminosity galaxies. Our hydrodynamical simulations predict that TDGs should have metallicities elevated above the normal luminosity-metallicity relation. Metallicity can therefore be a useful diagnostic for identifying TDG candidate populations in the absence of tidal tails. At magnitudes brighter than M$_R$ ~ -16 our sample of 53 star-forming galaxies in 9 HI gas-rich groups is consistent with the normal relation defined by the SDSS sample. At fainter magnitudes there is an increase in dispersion in metallicity of our sample, suggestive of a wide range of HI content and environment. In our sample we identify three (16% of dwarfs) strong TDG candidates (12 + log(O/H) > 8.6), and four (21%) very metal poor dwarfs (12 + log(O/H) < 8.0), which are likely gas-rich dwarfs with recently ignited star formation.
We develop a model for the distribution of the ISM and star formation in galaxies based on recent studies that indicate that galactic disks stabilise to a constant stability parameter, which we combine with prescriptions of how the phases of the ISM are determined and for the Star Formation Law (SFL). The model predicts the gas surface mass density and star formation intensity of a galaxy given its rotation curve, stellar surface mass density and the gas velocity dispersion. This model is tested on radial profiles of neutral and molecular ISM surface mass density and star formation intensity of 12 galaxies selected from the THINGS sample. Our tests focus on intermediate radii. Nevertheless, the model produces reasonable agreement with ISM mass and star formation rate integrated over the central region in all but one case. To optimise the model, we evaluate four recipes for the stability parameter, three recipes for apportioning the ISM into molecular and neutral components, and eig
H{alpha} observations centred on galaxies selected from the HI Parkes All Sky Survey (HIPASS, Barnes et al. 2001) typically show one and sometimes two star-forming galaxies within the approximately 15-arcminute beam of the Parkes 64-m HI detections. In our Survey of Ionization in Neutral Gas Galaxies (SINGG, Meurer et al. 2006) we found fifteen cases of HIPASS sources containing four or more emission line galaxies (ELGs). We name these fields Choir groups. In the most extreme case we found a field with at least nine ELGs. In this paper we present a catalogue of Choir group members in the context of the wider SINGG sample. The dwarf galaxies in the Choir groups would not be individually detectable in HIPASS at the observed distances if they were isolated, but are detected in SINGG narrow-band imaging due to their membership of groups with sufficiently large total HI mass. The ELGs in these groups are similar to the wider SINGG sample in terms of size, H{alpha} equivalent width, and surface brightness. Eight of these groups have two large spiral galaxies with several dwarf galaxies and may be thought of as morphological analogues of the Local Group. However, on average our groups are not significantly HI-deficient, suggesting that they are at an early stage of assembly, and more like the M81 group. The Choir groups are very compact at typically only 190 kpc in projected distance between the two brightest members. They are very similar to SINGG fields in terms of star formation efficiency (the ratio of star formation rate to HI mass; SFE), showing an increasing trend in SFE with stellar mass.
We present a search for outlying HII regions in the extended gaseous outskirts of nearby (D < 40 Mpc) galaxies, and subsequent multi-slit spectroscopy used to obtain the HII region nebular oxygen abundances. The galaxies in our sample have extended H I disks and/or interaction-related HI features that extend well beyond their primary stellar components. We report oxygen abundance gradients out to 2.5 times the optical radius for these galaxies which span a range of morphologies and masses. We analyze the underlying stellar and neutral HI gas distributions in the vicinity of the HII regions to understand the physical processes that give rise to the observed metal distributions in galaxies. These measurements, for the first time, convincingly show flat abundance distributions out to large radii in a wide variety of systems, and have broad implications for galaxy chemodynamical evolution.
We have initiated a search for extended ultraviolet disk (XUV-disk) galaxies in the local universe. Herein, we compare GALEX UV and visible--NIR images of 189 nearby (D$<$40 Mpc) S0--Sm galaxies included in the GALEX Atlas of Nearby Galaxies and pres ent the first catalogue of XUV-disk galaxies. We find that XUV-disk galaxies are surprisingly common but have varied relative (UV/optical) extent and morphology. Type~1 objects ($ga$20% incidence) have structured, UV-bright/optically-faint emission features in the outer disk, beyond the traditional star formation threshold. Type~2 XUV-disk galaxies ($sim$10% incidence) exhibit an exceptionally large, UV-bright/optically-low-surface-brightness (LSB) zone having blue $UV-K_s$ outside the effective extent of the inner, older stellar population, but not reaching extreme galactocentric distance. If the activity occuring in XUV-disks is episodic, a higher fraction of present-day spirals could be influenced by such outer disk star formation. Type~1 disks are associated with spirals of all types, whereas Type~2 XUV-disks are predominantly found in late-type spirals. Type~2 XUV-disks are forming stars quickly enough to double their [presently low] stellar mass in the next Gyr (assuming a constant SF rate). XUV-disk galaxies of both types are systematically more gas-rich than the general galaxy population. Minor external perturbation may stimulate XUV-disk incidence, at least for Type~1 objects. XUV-disks are the most actively evolving galaxies growing via inside-out disk formation in the current epoch, and may constitute a segment of the galaxy population experiencing significant, continued gas accretion from the intergalactic medium or neighboring objects.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا