ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient coupling of light to single atomic systems has gained considerable attention over the past decades. This development is driven by the continuous growth of quantum technologies. The efficient coupling of light and matter is an enabling techn ology for quantum information processing and quantum communication. And indeed, in recent years much progress has been made in this direction. But applications aside, the interaction of photons and atoms is a fundamental physics problem. There are various possibilities for making this interaction more efficient, among them the apparently natural attempt of mode-matching the light field to the free-space emission pattern of the atomic system of interest. Here we will describe the necessary steps of implementing this mode-matching with the ultimate aim of reaching unit coupling efficiency. We describe the use of deep parabolic mirrors as the central optical element of a free-space coupling scheme, covering the preparation of suitable modes of the field incident onto these mirrors as well as the location of an atom at the mirrors focus. Furthermore, we establish a robust method for determining the efficiency of the photon-atom coupling.
We discuss the scattering of a light pulse by a single atom in free space using a purely semi-classical framework. The atom is treated as a linear elastic scatterer allowing to treat each spectral component of the incident pulse separately. For an in creasing exponential pulse with a dipole radiation pattern incident from full solid angle the spectrum resulting from interference of incident and scattered components is a decreasing exponential pulse.
The utilization of time reversal symmetry in designing and implementing (quantum) optical experiments has become more and more frequent over the past years. We review the basic idea underlying time reversal methods, illustrate it with several examples and discuss a number of implications.
Quantum information protocols are inevitably affected by decoherence which is associated with the leakage of quantum information into an environment. In this paper we address the possibility of recovering the quantum information from an environmental measurement. We investigate continuous variable quantum information, and we propose a simple environmental measurement that under certain circumstances fully restores the quantum information of the signal state although the state is not reconstructed with unit fidelity. We implement the protocol for which information is encoded into conjugate quadratures of coherent states of light and the noise added under the decoherence process is of Gaussian nature. The correction protocol is tested using both a deterministic as well as a probabilistic strategy. The potential use of the protocol in a continuous variable quantum key distribution scheme as a means to combat excess noise is also investigated.
The fidelity of a quantum transformation is strongly linked with the prior partial information of the state to be transformed. We illustrate this interesting point by proposing and demonstrating the superior cloning of coherent states with prior part ial information. More specifically, we propose two simple transformations that under the Gaussian assumption optimally clone symmetric Gaussian distributions of coherent states as well as coherent states with known phases. Furthermore, we implement for the first time near-optimal state-dependent cloning schemes relying on simple linear optics and feedforward.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا