ترغب بنشر مسار تعليمي؟ اضغط هنا

Mixed-precision networks allow for a variable bit-width quantization for every layer in the network. A major limitation of existing work is that the bit-width for each layer must be predefined during training time. This allows little flexibility if t he characteristics of the device on which the network is deployed change during runtime. In this work, we propose Bit-Mixer, the very first method to train a meta-quantized network where during test time any layer can change its bid-width without affecting at all the overall networks ability for highly accurate inference. To this end, we make 2 key contributions: (a) Transitional Batch-Norms, and (b) a 3-stage optimization process which is shown capable of training such a network. We show that our method can result in mixed precision networks that exhibit the desirable flexibility properties for on-device deployment without compromising accuracy. Code will be made available.
Temporal context is key to the recognition of expressions of emotion. Existing methods, that rely on recurrent or self-attention models to enforce temporal consistency, work on the feature level, ignoring the task-specific temporal dependencies, and fail to model context uncertainty. To alleviate these issues, we build upon the framework of Neural Processes to propose a method for apparent emotion recognition with three key novel components: (a) probabilistic contextual representation with a global latent variable model; (b) temporal context modelling using task-specific predictions in addition to features; and (c) smart temporal context selection. We validate our approach on four databases, two for Valence and Arousal estimation (SEWA and AffWild2), and two for Action Unit intensity estimation (DISFA and BP4D). Results show a consistent improvement over a series of strong baselines as well as over state-of-the-art methods.
An important component of unsupervised learning by instance-based discrimination is a memory bank for storing a feature representation for each training sample in the dataset. In this paper, we introduce 3 improvements to the vanilla memory bank-base d formulation which brings massive accuracy gains: (a) Large mini-batch: we pull multiple augmentations for each sample within the same batch and show that this leads to better models and enhanced memory bank updates. (b) Consistency: we enforce the logits obtained by different augmentations of the same sample to be close without trying to enforce discrimination with respect to negative samples as proposed by previous approaches. (c) Hard negative mining: since instance discrimination is not meaningful for samples that are too visually similar, we devise a novel nearest neighbour approach for improving the memory bank that gradually merges extremely similar data samples that were previously forced to be apart by the instance level classification loss. Overall, our approach greatly improves the vanilla memory-bank based instance discrimination and outperforms all existing methods for both seen and unseen testing categories with cosine similarity.
Network binarization is a promising hardware-aware direction for creating efficient deep models. Despite its memory and computational advantages, reducing the accuracy gap between binary models and their real-valued counterparts remains an unsolved c hallenging research problem. To this end, we make the following 3 contributions: (a) To increase model capacity, we propose Expert Binary Convolution, which, for the first time, tailors conditional computing to binary networks by learning to select one data-specific expert binary filter at a time conditioned on input features. (b) To increase representation capacity, we propose to address the inherent information bottleneck in binary networks by introducing an efficient width expansion mechanism which keeps the binary operations within the same budget. (c) To improve network design, we propose a principled binary network growth mechanism that unveils a set of network topologies of favorable properties. Overall, our method improves upon prior work, with no increase in computational cost, by $sim6 %$, reaching a groundbreaking $sim 71%$ on ImageNet classification. Code will be made available $href{https://www.adrianbulat.com/binary-networks}{here}$.
This paper proposes Binary ArchitecTure Search (BATS), a framework that drastically reduces the accuracy gap between binary neural networks and their real-valued counterparts by means of Neural Architecture Search (NAS). We show that directly applyin g NAS to the binary domain provides very poor results. To alleviate this, we describe, to our knowledge, for the first time, the 3 key ingredients for successfully applying NAS to the binary domain. Specifically, we (1) introduce and design a novel binary-oriented search space, (2) propose a new mechanism for controlling and stabilising the resulting searched topologies, (3) propose and validate a series of new search strategies for binary networks that lead to faster convergence and lower search times. Experimental results demonstrate the effectiveness of the proposed approach and the necessity of searching in the binary space directly. Moreover, (4) we set a new state-of-the-art for binary neural networks on CIFAR10, CIFAR100 and ImageNet datasets. Code will be made available https://github.com/1adrianb/binary-nas
This paper is on highly accurate and highly efficient human pose estimation. Recent works based on Fully Convolutional Networks (FCNs) have demonstrated excellent results for this difficult problem. While residual connections within FCNs have proved to be quintessential for achieving high accuracy, we re-analyze this design choice in the context of improving both the accuracy and the efficiency over the state-of-the-art. In particular, we make the following contributions: (a) We propose gated skip connections with per-channel learnable parameters to control the data flow for each channel within the module within the macro-module. (b) We introduce a hybrid network that combines the HourGlass and U-Net architectures which minimizes the number of identity connections within the network and increases the performance for the same parameter budget. Our model achieves state-of-the-art results on the MPII and LSP datasets. In addition, with a reduction of 3x in model size and complexity, we show no decrease in performance when compared to the original HourGlass network.
We propose the first approach to the problem of inferring the depth map of a human hand based on a single RGB image. We achieve this with a Convolutional Neural Network (CNN) that employs a stacked hourglass model as its main building block. Intermed iate supervision is used in several outputs of the proposed architecture in a staged approach. To aid the process of training and inference, hand segmentation masks are also estimated in such an intermediate supervision step, and used to guide the subsequent depth estimation process. In order to train and evaluate the proposed method we compile and make publicly available HandRGBD, a new dataset of 20,601 views of hands, each consisting of an RGB image and an aligned depth map. Based on HandRGBD, we explore variants of the proposed approach in an ablative study and determine the best performing one. The results of an extensive experimental evaluation demonstrate that hand depth estimation from a single RGB frame can be achieved with an accuracy of 22mm, which is comparable to the accuracy achieved by contemporary low-cost depth cameras. Such a 3D reconstruction of hands based on RGB information is valuable as a final result on its own right, but also as an input to several other hand analysis and perception algorithms that require depth input. Essentially, in such a context, the proposed approach bridges the gap between RGB and RGBD, by making all existing RGBD-based methods applicable to RGB input.
Visual and audiovisual speech recognition are witnessing a renaissance which is largely due to the advent of deep learning methods. In this paper, we present a deep learning architecture for lipreading and audiovisual word recognition, which combines Residual Networks equipped with spatiotemporal input layers and Bidirectional LSTMs. The lipreading architecture attains 11.92% misclassification rate on the challenging Lipreading-In-The-Wild database, which is composed of excerpts from BBC-TV, each containing one of the 500 target words. Audiovisual experiments are performed using both intermediate and late integration, as well as several types and levels of environmental noise, and notable improvements over the audio-only network are reported, even in the case of clean speech. A further analysis on the utility of target word boundaries is provided, as well as on the capacity of the network in modeling the linguistic context of the target word. Finally, we examine difficult word pairs and discuss how visual information helps towards attaining higher recognition accuracy.
Visual keyword spotting (KWS) is the problem of estimating whether a text query occurs in a given recording using only video information. This paper focuses on visual KWS for words unseen during training, a real-world, practical setting which so far has received no attention by the community. To this end, we devise an end-to-end architecture comprising (a) a state-of-the-art visual feature extractor based on spatiotemporal Residual Networks, (b) a grapheme-to-phoneme model based on sequence-to-sequence neural networks, and (c) a stack of recurrent neural networks which learn how to correlate visual features with the keyword representation. Different to prior works on KWS, which try to learn word representations merely from sequences of graphemes (i.e. letters), we propose the use of a grapheme-to-phoneme encoder-decoder model which learns how to map words to their pronunciation. We demonstrate that our system obtains very promising visual-only KWS results on the challenging LRS2 database, for keywords unseen during training. We also show that our system outperforms a baseline which addresses KWS via automatic speech recognition (ASR), while it drastically improves over other recently proposed ASR-free KWS methods.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا