ترغب بنشر مسار تعليمي؟ اضغط هنا

We present Herschel far-IR photometry and spectroscopy as well as ground based CO observations of an intermediate redshift (0.21 < z < 0.88) sample of Herschel-selected (ultra)-luminous infrared galaxies (L_IR > 10^11.5L_sun). With these measurements we trace the dust continuum, far-IR atomic line emission, in particular [CII],157.7microns, as well as the molecular gas of z~0.3 (U)LIRGs and perform a detailed investigation of the interstellar medium of the population. We find that the majority of Herschel-selected intermediate redshift (U)LIRGs have L_CII/L_FIR ratios that are a factor of about 10 higher than that of local ULIRGs and comparable to that of local normal and high-$z$ star forming galaxies. Using our sample to bridge local and high-z [CII] observations, we find that the majority of galaxies at all redshifts and all luminosities follow a L_CII-L_FIR relation with a slope of unity, from which local ULIRGs and high-z AGN dominated sources are clear outliers. We also confirm that the strong anti-correlation between the L_CII/L_FIR ratio and the far-IR color L_60/L_100 observed in the local Universe holds over a broad range of redshifts and luminosities, in the sense that warmer sources exhibit lower L_CII/L_FIR at any epoch. Intermediate redshift ULIRGs are also characterised by large molecular gas reservoirs and by lower star formation efficiencies compared to that of local ULIRGs. The high L_CII/L_FIR ratios, the moderate star formation efficiencies (L_LIR/L_CO or L_IR/M_gas) and the relatively low dust temperatures of our sample (which are also common characteristics of high-z star forming galaxies with ULIRG-like luminosities) indicate that the evolution of the physical properties of (U)LIRGs between the present day and z > 1 is already significant by z ~ 0.3.
107 - Georgios E. Magdis 2010
We present a multi-wavelength, UV-to-radio analysis for a sample of massive (M$_{ast}$ $sim$ 10$^{10}$ M$_odot$) IRAC- and MIPS 24$mu$m-detected Lyman Break Galaxies (LBGs) with spectroscopic redshifts z$sim$3 in the GOODS-North field (L$_{rm UV}$$>1 .8times$L$^{ast}_{z=3}$). For LBGs without individual 24$mu$m detections, we employ stacking techniques at 24$mu$m, 1.1mm and 1.4GHz, to construct the average UV-to-radio spectral energy distribution and find it to be consistent with that of a Luminous Infrared Galaxy (LIRG) with L$rm_{IR}$=4.5$^{+1.1}_{-2.3}$$times 10^{11}$ L$_{odot}$ and a specific star formation rate (SSFR) of 4.3 Gyr$^{-1}$ that corresponds to a mass doubling time $sim$230 Myrs. On the other hand, when considering the 24$mu$m-detected LBGs we find among them galaxies with L$rm_{IR}> 10^{12}$ L$_{odot}$, indicating that the space density of $zsim$3 UV-selected Ultra-luminous Infrared Galaxies (ULIRGs) is $sim$(1.5$pm$0.5)$times 10^{-5}$ Mpc$^{-3}$. We compare measurements of star formation rates (SFRs) from data at different wavelengths and find that there is tight correlation (Kendalls $tau >$ 99.7%) and excellent agreement between the values derived from dust-corrected UV, mid-IR, mm and radio data for the whole range of L$rm_{IR}$ up to L$rm_{IR}$ $sim$ 10$^{13}$ L$_{odot}$. This range is greater than that for which the correlation is known to hold at z$sim$2, possibly due to the lack of significant contribution from PAHs to the 24$mu$m flux at $zsim$3. The fact that this agreement is observed for galaxies with L$rm_{IR}$ $>$ 10$^{12}$ L$_{odot}$ suggests that star-formation in UV-selected ULIRGs, as well as the bulk of star-formation activity at this redshift, is not embedded in optically thick regions as seen in local ULIRGs and submillimeter-selected galaxies at $z=2$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا